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SUMMARY

During the year of 1986-1987, we have developed the vortex element
method and the transport element method,, for the numerical simulation of the0NaviertStokes equations and the energy and species conservation equations,respectively. These methods are based on a Lagrangian, grid-free, time-
accurate simulation of the governing equations at high Reynolds and Peclet
numbers, without resorting to turbulence modelling. Finitek-Iate chemicalZ reactions, finite compressibility and finite heat release rates are alsoconsidered in the formulations of the numerical schemes. To validate these
methods, we are obtaining solutions for reacting shear layers, both '
homogeneous and heterogeneous, under various idealizations, and comparing
the numerical results with experimental data. The solutioas are also
analyzed to investigate the mechanisms of turbulence -combustion
interactions.
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OBJECTIVES

The goal of this research program is to develop, test and apply methods

of numerical simulation, based on vortex dynamics, to reacting flows with

finite chemical reaction and heat release rates. In particular:

I. The development of accurate and efficient numerical methods which

can be utilized in the simulation of the time-dependent, multi-

dimensional Navier-Stokes equations at high Reynolds number, and

can be extended to solve the energy and species conservation

equations in cases where the chemical reaction rates are finite and

fast and when the associated heat release is large and hence

dynamically important.

II. The application of these numerical algorithms to turbulent reacting

shear layers, for both homogeneous and heterogeneous reactants, to

validate the numerical methods against experimental results, and to

study the underlying mechanisms of entrainment and mixing and how

they affect the rates of product formation.

III. The investigation of the mechanisms of turbulence-combustion

interactions based on rigorous fundamental models, and how these

interactions can be manipulated to provide more efficient burning.

In particular, the effect of turbulent fluctuations and flow

stretch on the rate of chemical reaction, flame stability and

extinction.
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PERSONNEL

Three graduate students have completed their master's theses under the

sponsorship of this program. Their names and thesis titles are listed at

the end of the report. Currently, five graduate students are continuing

their doctorate work under the partial of full support of this project.

Their names, listed according to seniority, are

(1) Ghassem Heidarinejad

(2) Omar Knio

(3) Habib Najm

(4) Anantha Krishnan

(5) Luis-Fillipe Martins

EQUIPMENT

To meet the computational needs of this work, we have built the

following system around a VAX 11/750:

(1) An array processor MAP-6420.

(2) Two MicroVAX II workstations, and a MicroVAX cpu.

(3) A local area network with communication interface to a supercomputer.

(4) Graphics terminals, a laser printer, and a color film recorder.

The system has been hard-wired into the Campus-wide network to allow

easier access to other computational facilities available within and outside

M.I.T., especially the John von Neumann supercomputer center at Princeton.
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WORK STATUS

In the following, the vortex and transport element methods are briefly

described and the results of their preliminary applications are discussed.

THE VORTEX ELEMENT METHOD

In this method, Lagrangian particles are treated as finite vortex

elements that accurately discretize the vorticity field. We have shown that

the accuracy of the method is governed by: the shape function of individual

elements, the core radius and the distance between neighboring elements. To

preserve the accuracy as the flow develops strong strain fields, particle

distribution must change to accommodate distortions of the vorticity by the

strain field, leading to a natural growth in the number of vortex elements

* with time as the flow develops stronger gradients, or fine scales, via

stretch. We are implementing a new algorithm to limit the number of

interactions between N vortex elements to O(N), instead of O(N2 ) in direct

interactions, using multipole expansion of the contribution of groups of

elements.

In Appendix I, the scheme is described in detail, and results for the

evolution of a temporal shear layer are analyzed. A temporal shear layer

model allows one to limit the computations to a fixed number of large eddies

as they evolve from a perturbation to a coherent vortex structure. The

accuracy of the computations reveals the detail of the inner structure of

the large eddies and the development of secondary instabilities which force

the core into several rotations, as well as the severe strain which material

line are exposed to within the eddy core. The application of the scheme to

a spatially developing shear layer is presented in Appendix II. The

improvement of the accuracy over schemes which utilize a fixed number of

elements can be realized by comparing these results with results shown in
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Appendix III. In the vortex element method, the number of elements grows as

the strain field develops, letting one capture the areas where the strain

field, and thus the large scalar gradients develop.

Extension of the vortex element method to three dimensional flow

simulation has been accomplished by utilizing spherical vortex elements that

discretize a three dimensional vorticity field and undergo stretching along

the direction of the vorticity vector, as described in Appendix IV. The

application of the scheme to study the evolution of azimuthal instabilities

on vortex rings has shown that these structures are unstable to a particular

wave number, causing the ring to develop into a star-like structure with

lobes of vorticity extending in the radial direction of the ring. Results

also show that these azimuthal instabilities can excite higher frequency

modes by vortex stretching, generating a turbulent cascade of the energy

into higher wave numbers. Results of the simulation compared favorably with

experimental data. The computations are currently being extended to

simulate the evolution of streamwise vorticity in a planar shear layer and a

turbulent jet.

THE TRANSPORT ELEMENT METHOD

To achieve an efficient, self-adaptive Lagrangian algorithm for the

solution of the energy and species conservation equations, scalar gradients

are discretized using core functions similar to those used in the vortex

element method. However, contrary to the scalar concentration, gradients

are not conserved along a particle path since stretching and tilting

material layers enhance the gradients and change their direction. This

effect is implemented by changing the strength of the transport elements

according the variations of a small material line that coincides with the

center of the transport element. Adding a chemical source term requires

jot S '
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changing the local gradients with time. This amounts to transporting

several scalar gradients with each element and integrating the source term

within each element to compute its instantaneous strength according to a

given chemical kinetics scheme. At low Mach number, volumetric expansion

due to heat release produces an irrotational velocity field, and generates

non-baroclinic vorticity due to the interaction between the density and

pressure gradients.

In Appendices I and II, the mathematical formulations of the transport

element method are described for a non reacting flow and a for reacting

flow, respectively. In Appendix I, the method has been applied to compute

the temperature profiles in an initially-thermally stratified temporal

mixing layer, showing how entrainment leads to intermittency within the eddy

core and to mixing enhancement by generating large gradients as the material

layers stretch. Statistics of mixing of a passive scalar in a spatial shear

layer have been compared with experimental results in Appendix III, where

only a simplified version of the scheme, the scalar element method, was

used. The comparison is favorable, considering the fact that no turbulence

modeling was implemented to obtain these results. The accuracy of the

ccmputations falls off around the boundaries of the layer due to the small

number of scalar elements which were used in this simulation. The transport

element method avoids this problem by transporting the gradients, instead of

the scalar, and is expected to yield better predictions for the mixing

statistics. This is currently being tested.

Results for the development of an eddy in a reacting shear layer are

* presented in Appendix II. Initially, reactants and products are on the top

and bottom sides, respectively. As the eddy grows by entraining more

reactants, the flame is stretched and wrinkled, leading to a rise in the

I
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rate of product formation over that of the corresponding laminar flame.

The ratio of the total amount of products formed in the two cases scales

with the square of the flame length in the turbulent case.

To validate these results, computations will be performed for a

spatially developing, reacting mixing layer, and statistical information

derived from the simulations will be compared with experimental

measurements.

TURBULENCE-COMBUSTION INTERACTIONS

Slowing down the rate of chemical reaction in the reacting mixing layer

leads to local and temporary extinction, as shown in Appendix II. As the

Damkohler number of the reacting mixture is lowered, the rate of product

formation is decreased. Moreover, the reaction is observed to cease

completely for short periods of time. The lower the Damkohler number, the

earlier the reaction is temporarily extinct. Local extinction is observed

around areas of largest strain field. The extinction occurs temporarily

since on the other side of the layer, products at high temperature heat up

the reactants and resume the reaction after a short pause. To explain why

extinction is correlated with the strain field, we inspected plots of the

temperature, strain rate and expansion rate along one of the layers within

the flame zone. It was found that a negative correlation existed between

the strain rate and expansion rate, and between the temperature and strain

rate. Thus, it was concluded that as the strain lowered the temperature by

enhancing the diffusion flux via strong gradients, it led to flame

extinction. The temperature drop was due to the fact that chemistry was

slow so that it could not make up for the increase in the diffusion fluxes

with stretch.

-
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Other parameters, e.g., the Peclet number, Lewis number and the

activation energy, can affect the interaction between turbulence and

combustion. Work is underway to investigate their influence on the

mechanism described above.

4
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Appendix I

The paper on "Numerical simulation of a thermally stratified shear
layer using the vortex element method" describes formulation the vortex
element method an'd the transport element method for a non-reacting flow.
Results for the application of the methods to a non-reacting, thermally
statified temporal shear layer are presented.

1
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USING THE VORTEX ELEMEN METHOD
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ABSTRACT

In computing the development of an unstable inviscid shear layer, it is
found that using a fixed number of vortex elements can lead to large errors
due to the strong strain field which develops and acts to distort the
original vorticity contours. It is suggested that the vorticity should be
redistributed among elements which are arranged in the local principal
direction of strain in order to capture this distortion accurately. Mixing
within an initially stratified layer, which results from the combined action
of convection and diffusion, is computed using a similar scheme to integrate
the energy equation. Calculations illustrate the evolution of the
temperature profile during the growth of the instability.
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'N. I INTRODIUCTIN

Numerical simulation of inviscid two-dimensional incompressible flow

using vortex discretization of the Euler equations has been discussed

extensively in recent literature (Leonard [1], Beale and Majda [2], Hald [3]

and Ghoniem and Ng (4]). The method is based on distributing the vorticity

field among elements which carry radially-symmetric, compact supports of

vorticity (Chorin [5]). By choosing the extent of the support, or the core

radius of each element to be larger than the distance of separation between

-w neighboring elements, the fields of individual elements overlap and high

order discretization of the vorticity field can be achieved. vortex

* elements move with the local flow velocity evaluated at their geometrical

centers, which is computed as the summation over the contributions of all

elements that exist in the field. The motion of a vortex element does not

change its circulation and, in most applications, vortex elements possess

invariable core shape and size.

The attraction of these Lagrangian, grid-free methods is that, by

construction, computational vortex elements are expected to be, at all

times, concentrated around zones of high velocity gradients. When properly

exploited, this property endows the scheme with the resolution necessary to

study interesting phenomena that arise when molecular diffusion is small

relative to convective transport. For instance, at high Reynolds numbers,

vorticity exists on small patches of the fluid and it suffices to distribute

computational elements within these patches and hence avoid wasting labor on

zones of very small vorticity. That the elements move to capture large

velocity gradients is particularly important in unsteady and nonlinearly

unstable flows where the evolution of the instability causes a substantial
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distortion of the vorticity distribution. Moreover, using a Lagrangian

formulation of the equations of motion avoids the convective non-linearity

and enables the construction of computational schemes which are explicit in

time. The employment of moving Lagrangian grids (Fritts and Boris (61), or

grid-free schemes such as contour dynamics (Zabuski et al. (7)), are other

successful ways of accomplishing the same goal.

1.2. BRIEF REVIEW

Analysis of the convergence of inviscid vortex methods shows that three

factors govern their accuracy: (1) the scheme of discretization of the

initial vorticity; (2) the form of the core function; and (3) the ratio of

the core radius to the separation between vortex elements (Chorin et al.

* [8], Del-Prete and Hald [9], Hald [3,10], and Beale and Majda [2,11,12].)

Results of these analyses have been supported by numerical tests (Nakamura

pet al. (13], Roberts [141, and Perlman [15]). In the following, all three

factors are briefly discussed.

To initialize the strength of vortex elements, Del-Prete and Hald (9]

used the average vorticity within an area element around the center of the

element, while Beale and Majda [2] suggested using the vorticity at the

center of the element. Nakamura et al. [13] minimized the global error

between the continuous and the discrete vorticity distribution to evaluate

the latter. Anderson and Greengard [161 proposed the use of a non unifor&m

mesh to discretize the vorticity field. Using the proceedure in (21 or [91,

one should expect almost a second-order accuracy for short time if the core

function is chosen to be a second order Gaussian. A fourth order Gaussian

was shown to improve the accuracy. In both cases, a critical parameter is

the ratio of the core radius to the distance of separation between the

0
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centers of the elements, which must be chosen larger than unity to preserve

the accuracy for long time.

As the elements move, their separation exceeds their initial value if

'strong strain field arises. This, in effect, decreases the critical ratio

of core/separation, leading to a deterioration of the accuracy. The fact

that large strains cause deterioration in the accuracy of vortex methods has

been observed explicitly in analysis, e.g., Leonard [1]. Thus, for most

inviscid vortex methods, which are based on using a fixed number of vortex

elements with invariant cores, the evolution of large local strains can lead

to large errors. For example, a circular patch of vorticity may deform into

an elliptical shape with its major axis aligned with the principal direction

of strain. If a small fixed number of computational elements is used, they

may not be able to accommodate these severe changes. Anderson [17] and

Krasny [18], when discretizing non-smooth vorticity, employed a very large

core radius so that as vortex elements moved away from each other due to

stretch, reasonable overlap could still be maintained to satisfy the

requirements for accuracy. One may also be forced to consider schemes of

redistributing the vorticity among a different set of elements under

conditions of large strain. Similar schemes have been used in methods of

contour dynamics to preserve the accuracy of the integration around the

vorticity contours (Zabuski and Overman [19].) Krasny [20], in an

independent effort, used a similar procedure in simulating the evolution of

a vortex sheet by a desingularized Biot-Savart integral.

Extension of Lagrangian element methods to integrate a scalar

conservation equation has been applied to several problems in one dimension

(Chorin [21], Ghoniem and Oppenheim (22,23] and Ghoniem and Sherman (24].)

These schemes were based on using the scalar gradient, in analogy to

'
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vorticity, in the transport process. Anderson [16,25] constructed a scheme

to solve for a two dimensional thermal in the inviscid Boussinesq

approximation by discretizing the density equation in its vortex form. This

was done by casting the equation in gradient form and discretizing the

density gradients among elements that could be transported. This scheme,

while preserving the advantages of the vortex method, suffers from a major

problem: A large strain field, while it may lead to the generation of large

gradients, depletes the area of computational elements which are used to

transport these gradients.

1. 3. ORGANIZATION

In this paper, we apply the inviscid vortex methods to the problem of a

* OtemU ral shear layer at high Reynolds number. This problem is characterized

by a well-defined smooth vorticity field at time zero, and has well-

documented stability properties. At later times, the shear layer develops

into a complicated structure which resembles a turbulent eddy, and a very

strong strain field is generated around this eddy. We use the analytical

solution of a temporal shear layer to measure the accuarcy of the results at

the initial stages of development, and test the schemes for initializing the

vortex elements. At longer times, we observe the effect of the strain field

on the accuracy of the computations and suggest ways to cope with it. We

then proceed to compute the temperature field as fluids with differente
temperatures are entrained, stretched and mixed.

In Section II, the formulation of the vortex method is described, and

is extended to solve for a flow with a strong strain field. The scheme is

applied to compute the evolution of a vorticity layer subject to periodic

boundary conditions. The growth of the instability and its effects on the

flow field are investigated. In Section III, the concepts of the vortex

OS.
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method are generalized to solve the energy equation and to obtain the

temperature profile across the shear layer during its development. The

paper ends with conclusions in Section IV.

0.1

et
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II INVISCID INCOMPRESSIBLE FLOW

I 1. 1. THE VORTEX METHOD

For an inviscid incompressible flow, the vortex transport equation is:

a- + u.VW - 0 (i)

a * -- ) (2)

where u - (u,v) is the velocity, w - V x u is the vorticity, x - (x,y) are

the streamwise and cross stream directions, respectively, t is time, V-

(8/ax,a/ay) and A - V.V. Variables are normalized with respect to the

appropriate combination of a characteristic velocity and length scale. i is

the stream function defined so that u - 8w/8y and v - - a*/ax. The solution

of Eq. (1) can be written as:

W(X(Xt),t) - W(X,0) (3)

while X is governed by:
Su(X(Xt),t) (4)

where x(X,0) - X. In the vortex method, the vorticity field W(X,O) is

discretized between elements centered at Xi, i-l,..,N, so that:

N
w(x,0) - r ri f6(x-Xi) (5)~i-i

where ri- i h2 is the circulation of an element of strength wi and f, is the

core function. f6(x) - 1/62 f(r/6), where r2-x2+y2 , and f6 dx - 1. 6 is

the core radius, and f6 is a fast decaying function so that most of the

vorticity is concentrated within r < 6. To approximate the initial

vorticity distribution accurately, 6 should be greater than h, where h is

-
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the initial separation between vortex centers. The core function f plays a

similar role as interpolating polynomials in finite-difference schemes and

base functions in finite-element formulations. By requiring f to be

radially symmetric, the approximation in Eq. (5) is at least second order.

Using Eq. (3) and the incompressibility condition, the vorticity

distribution at any time is given by

N
w(x,t) - z ri f8 (x-x i ) (6)

i-1

where dXi/dt-u(Xi,t) and Xi(Xi,0)-Xi .

The stream function of a single vortex element is obtained by

integrating Eq. (2). Using polar coordinates, for a vortex element placed

at x-0, a3*/ar - -K(r/S)/r, where K(r) - 1r r' f(r') dr'. Moreover, u--

w6 /3r. The velocity field induced by a distribution of vortex elements, of

shape f8 and strength ri located at Xi(Xit) is:
1

N
,W U (x,t)- z ri K8 (x-xi) (7)

i-l1

where K (x) - -x) K(') (8)
r 2 (8)

Vortex elements move without changing their circulation (strength) or core

shape, at a velocity computed from Eq. (7).

In the calculations, we used mostly a second order Gaussian core:

r

K~ e-
K -- ( - e[2 ) (9)

or -.
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when applying the vortex scheme to a flow field with boundary

conditions other than u(-,t)-0, a potential flow is added to satisfy these

conditions. In this work, we perform computations for a periodic shear

layer. The velocity field induced by vorticity outside the computational

domain 0 < x < X, where X is the longest wavelength of the perturbation,

must be added to u.. The total velocity is:

N r- 1 +1[ (y, -(x+jX)) ex -((x+jX) 2+y 2)

U- ~ ~ ± Y )exp (-
i-i j-0 ((x+j2) +y) I

+ n (-sinh(2nY/X), sin(2nx/X)) (10)I (c-o-sh(2ny/X)- cosl2nx/x))

where N is the total number of vortex elements in the computational domain 0

< x < X. Note that since 6 << X, the effect of the core was included only

for the nearest sister vortices.

The initial vorticity distribution across the shear layer can be well

represented by a Gaussian curve (which should not be confused with the

Gaussian core of individual vortex elements) with a spread 2a:

Q(X) - A- exp(- Y2/o 2 ) (lla)

where AU is the velocity difference across the layer and a is the standard

deviation of the Gaussian. The corresponding velocity distribution is:

UX) - AU erf(Y/a) (llb)

where erf(x) - 2/,k 0 x exp (- r2 ) dr is the error function. We take AU and

a as the characteristic velocity and length scales of the problem,

respectively.

J i

'a

tI
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As it was pointed out in the Introduction, using either a pointwise

discretization, wi-Q(Xi), or an area average value wi- 1hxh Q(X) dX, where

x Xi, i-1,2, .. ,N are the centers of a square mesh of side h, to discretize

the vorticity of the shear layer among vortex elements produced a large

error in the initial growth of the perturbation. Instead, the following

scheme was used:
' N

N
Q(Xi) E Wi h 2 f6(Xi-X )  (12)

j-l

for i-i,2,...,N. The error associated with this distribution was used as a

measure of the accuracy of the initial discretization. In all cases, the

error leI - j IQ(X)-w(X,0)I dX < 10-5 . The error eW increased rapidly as

6/h was decreased below one, which is consistent with the result of the

convergence theory which shows that the overlap between neighboring elements

is necessary for accurate discretization of vorticity. For 6/h > 1, the

error was less sensitive to its exact value, uptil 8/h - 1.5. In the

following calculations, we used 8/h - 1.1 - 1.4.

To measure the effect of the accuracy of the initial discretization of

vorticity among vortex elements on the flow field for short times, we will

use the rate of growth of the perturbation. The growth of the initial

perturbation can be characterized by an integral parameter I as:

1 0 - I lu(x,t) - Ux)l dx (13)

which is used in the linear theory analysis of the perturbation.

At t - 0, the layer was perturbed by a sinewave with amplitude c, taken

as 0.001 X, 0.01 X, and 0.1 X. In Fig. 1, we compare the growth of theIperturbation with the prediction of the linear theory of stability (Michalke
I"
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(26].) to assess the accuracy of the vortex method for short times. For

most of the computations, X - X - 13.2 a, which corresponds to the wave

with the maximum growth rate. Eq. (4) is integrated using a second order

Heun's method with at - 0.1, and h - X / 44 - 0.3, and N(0) - 572 vortex

elements. The figure indicates that for c - 0.01 and 0.001, the layer

behaves linearly and the computed growth rate I - dlnI/dt - 0.215 agrees

well with the results of the linear theory, i - 0.22. The latter was

computed as the eigenvalue of the linearized Euler equations (Betchov and

Criminale (27].) Using h - X / 24, i.e. N(0) - 168, and a second order time

integration scheme, I - 0.23. For N(0) - 572 and a first order time

integration, i - 0.24. Within this linear stage of development, the maximum

4 distance between neighboring element in the direction of maximum strain AX <

1.5 h, i.e the flow is developing mild stretch. For c - 0.1, the

perturbation leads directly to the nonlinear range.

In Figs. 2, 3 and 4, the vortex elements and their velocity vectors are

plotted for c - 0.001 X, 0.01 X, and 0.1 X, respectively. In the first two

cases, the end of the linear range corresponds to the beginning of the

rollup of the interface, defined here as the line which coincides with y - 0

at t - 0, and the formation of a spiral center at the midpoint of the

wavelength. Concomitantly, the interface starts to stretch near the

boundaries of the domain and two saddle points are established at the

beginning and end of the wavelength, x - 0, and X. Beyond the linear range,

the perturbation continues to grow with more layers rolling around the

spiral center and stretching near the saddles. Within this nonlinear range

of development, special care must be exercised or the numerical accuracy

deteriorates quickly, as exhibited by the evolution of irregular motion near

the saddles and the loss of organization of the evolving structure.



11.2. EFFECT OF STRETCH

The loss of organization, which is associated with the development of

strong stretch, illustrates one of the fundamental problems of the vortex

method. Vortex elements, which start as cores with radial symmetry, may not

. properly represent the vorticity field after it has developed strong local

strains. As the effective distance, AX, between neighboring elements

increases, the ratio 6/6X (equivalent to 6/b) reaches levels where the

vorticity discretization becomes inaccurate. One obvious remedy is to

restart the calculations with smaller values of h to allow a larger number

of weaker elements to represent the strong distortion. However, that only

delays the onset of the crisis at the expense of using more elements at the

initial stages when they are not needed. Several remedies may be suggested:

(1) utilizing deformable cores; (2) employing large cores; or (3) using more

elements as the distance between the original elements increases.

The first scheme, utilizing deformable cores, depends on assuming that

- the core structure will become elliptical as stretch develops, with the

major axis of each element aligned with the local principal direction of

strain. The vorticity distribution within the core must also adapt to the

geometrical boundaries of the cores. If elements with constant vorticity

within the cores and zero outside, i.e. Rankine vortex elements, are used

then these elements will become Kirkchoff vortices which have analytical

expressions for the induced velocity field. However, there is an obvious

limitation on maintaining one ellipse as a single element if the ratio

between its axes exceeds a reasonable value. Thus, this scheme is

discarded.

The second scheme, in which one uses large cores, did not yield

accurate predictions for the growth rate within the linear range, in

I
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accordance with the results of the convergence theory. Moreover, it will

fail at the point where S/AX < 1 due to stretch. It does, however, delay

the deterioration of accuracy since it maintains a reasonable overlap

between neighboring elements for longer times.

The third option, redistributing the vorticity field among an

increasing number of elements arranged along the direction of principal

direction of strain, is employed here. One monitors the distance between

neighboring elements in the direction of maximum positive stretch Ax. If Ax

> g h, where 1 < a < 2, an extra element is placed halfway between the

original elements and the vorticity is redistributed to compute the share of

the new element. Ideally, this redistribution should not perturb the

existing vorticity field, that is

N N+n ~
(xt) - r ri f -(x) . r. ri f6 (x-) (14)

where n is the number of new particles, and a - indicates the new value of

the strength and location of the vortex elements. Unfortunately, this is a

large dense system of linear equations to be solved every time step.

Therefore, its benefit does not warrant the added cost.

A more economical scheme is based on equally interpolating the strength

of the two original elements among the three elements, i.e. assuming uniform

4 stretch between the two original elements. This amounts to splitting the

original vortex dumbbell formed of two vortex discs into three discs when

the distance between the centers of the two discs exceeds a threshold, as

shown in Fig. 5. To minimize the interpolation errors, the maximum

interdistance between neighboring elements is taken as 1.5 h. This will

also keep the ratio S/Ax within reasonable limits.

I+ ," - ' '-' ' " " ' ' " t "+" " + . "' '- % ''p % '' - % " ' ' . ', '- , ' . . '. - - '
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To illustrate the degree of stretch experienced by this flow, we plot

the growth of the length of the interface, and the total number of vortex

elements, N(t), used to capture this stretch for three perturbations c -

*' 0.001X, 0.01X, and 0.1 X in Figs. 6, 7, respectively. Within the linear

range the layer is subjected to mild stretch and N remains almost constant.

Beyond that, the length of the line grows linearly and N multiplies

accordingly. From the plots of the location of vortex elements, we noticed

that most of the stretch is concentrated around the spiral center and the

saddles at the boundaries of the domain.

11.3. SHEAR LAYER DYNAMICS

Figures 1, 2, 3 and 4 reveal that the growth of the perturbation and

4 the development of the eddy structure can be divided into four stages: (1)

linear growth; (2) rise to a maximum amplitude; (3) decay to a constant

amplitude; and, (4) very slow decrease of amplitude. The first stage has

been discussed. The strongest stretch and fastest multiplication of the

vortex elements occur during the second stage where an eddy is forming in

the middle of the wavelength and two braids are evolving between each two

neighboring eddies. During this stage, the core maintains almost a circular

configuration and the stretch is concentrated within the braids.

In the third stage, the eddy deforms into an elliptical structure,

while the size of the perturbation decreases from its maximum value. This

is accompanied by more stretch along the braids and within the core, and a

slowdown of the eddy rotation. By the end of this stage, the thickness of

the braids at the saddle points has become extremely small. At the final

stage, the envelope of the core reaches a dynamic equilibrium, i.e., it does

not rotate any more, while its boundaries keep on stretching as the fluid

within the eddy starts to move in the main directions of the streams.

I' ' " #-. " " " "' '' '' ". .. " ' " '' , , %
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Although there are signs of that, it is difficult to confirm that the flow

has reached a steady state.

The kinetic energy of perturbation u'. u'/2, where u'- u - U, and the

total kinetic energy in the flow within the computational domain, u.u/2, are

plotted in Figs. 8a and 8b. The first quantity rises with the growth of the

perturbation and the formation of the eddy, then falls with the collapse of

the eddy and the return of the fluid to the main streams (Corcos and Sherman

[28]). The total kinetic energy is conserved since the flow is inviscid.

Using larger values for h while keeping 6/h the same caused a slight

fattening of the core at latter times, while the main features of the flow

were reproduced almost exactly. A similar modification of the structure is

observed when using a first order time integration scheme, or increasing the

time step. It was concluded that the errors introduced by using a small

number of elements or a low order time integration scheme were numerical-

diffusion-like errors. We also found that the dependence on the value of h,

or the initial number of elements, becomes much less pronounced when the

scheme of increasing the number of elements with stretch is employed.

Figure 9 shows a qualitative comparison between the experimental results of

Roberts et al. [29] and the computational results. Here we use a Galilean

transformation to compare the experimental results of the spatially-

developing layer and the computational results of the temporal layer.

The physical parameters that govern the flow field are X and c.
' *

Results for the rollup of a layer with X - 10.5 < X are presented in Figs.

10 and 11, showing the growth of the perturbation and the vorticity field.

is the wavelength of the most unstable perturbation. The computed growth

rate I - 0.214 while the analytical value is 0.208. More vorticity remains

l4*
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in the braids between the eddies which are not strong enough to accomplish

the same stretch as in the case of X

Figures 12 and 13 show results for X 2 X, with c - 0.01X and 0.lX,

respectively. In the first case, I - 0.18 while the analytical result is

- - 0.173. The core is smaller and weaker than for the case of X and hence the

braids are thicker and maintain more of the original vorticity. At later

times, a small scale rollup is observed near the boundary of the domain due

to the instability of the vorticity layer that forms the braids. This

rollup occurs only at the fourth stage of development when the midsection of

the braids becomes almost stationary, i.e. when the motion produced by the

braids is neutralized. Comparing Figs. 12 and 13, we see that contrary to

* the most unstable case, the effect of the initial perturbation is more

pronounced here in terms of the size and shape of the eddy and the braids.

Higher amplitudes of perturbation tend to form a larger core and thinner

braids. The ratio between the major and minor axes of the elliptical core

increases with c and small amplitude waves start to appear on the braids.

Figures 14 and 15 show results for X - 3 X with amplitudes c - 0.01X,

and 0.1X, respectively. The effect of the amplitude is emphasized further

since at larger c, the core splits into two eddies. This bifurcation

phenomenon was observed before by Pozrikidis and Higdon (30]. The braid

instability is manifested here by the long waves that appear at the later

stages of development of the layer.

With the presence of two perturbation wavelengths, a new process is

observed. Figures 16 and 17 depict results for a layer subject to two

perturbations superimposed at t - 0, at X and 2X with c - 0.1X for both

perturbations. The results show that when the amplitude of the two

perturbations are equal, pairing starts at the end of the second stage andIJ.
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before any substantial elongation of the eddies. The growth of the

subharmonic perturbation closely resembles that of the fundamental, as shown

in Fig. 17. The eddies continue to deform while they pair until the "vortex

fluid" contained within each structure start to rotate around a common

center and their original boundaries become indistinguishable. Similar

qualitative observations were shown in the computations of Corcos and

Sherman [28] and Riley and Metcalfe [31].

i

_I
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III THE TEMPERATURE DISTRIBUTION

III.I. THE TRANSPORT ELEMENT METHOD

In an inviscid incompressible flow, the temperature distribution

evolves according to the following form of the conservation of energy:

1T + u VT -0 (15)
t

where T is temperature. This is equivalent to the statement that

T(X(X,t),t) - T(X,0), where X(X,0) - X and dX/dt - u(X,t). To solve this

equation using a Lagrangian element scheme, we start by introducing the

temperature gradient q - 7r, where q - (p,q) is a vector proportional but

opposite to the heat flux vector -k q, k being the thermal conductivity.

o The transport equation of q is obtained by taking the gradient of Eq. (15)

and rearranging:

t+ u.Vq -q.Vu- q x w (16)
at

where w - w ez and ez is the unit vector normal to the (x,y) plane. Thus,

along a particle path X(X,t), the temperature gradient changes according to

the local strain field and turns with the local rotation of the fluid

element. Using the vortex method described in the previous section, the

velocity gradient may be computed directly from the vorticity distribution

as: Vu- r i YK6(x-X i ) + Vup , where up is the irrotational component of the

.: velocity.

The scheme proceeds in the same way as the vortex algorithm. The

initial temperature gradient is discretized among a number of elements

located at the centers of a square mesh of side h so that:
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i N h2

q(x,0) - r qi f6(x-Xi )  (17)ii-ii 1

where q(x,0) is the initial distribution of the temperature gradient, q =

VT(X,0). To initialize qi' a similar procedure to that used in computing

the strength of the vortex elements is employed here, i.e. Eq. (12) with q

instead of w, is solved to find qi(O). To update qi(t), Eq. (16) is solved

in two fractional steps: in the first step, the elements are transported

without changing their strength or their core shape or size. In the second

step, the strength of the elements is updated according to:

dq i

t - qi - 7ui - qi , i  (18)

Thus, a system of ordinary differential equations must be integrated to

.'f. update the strength of the gradient elements as they move along particle

paths. The local gradient at time t is computed from:

N
q(x,t) - E qi(t) h2 f6(x- )  (19)i"m

The core function f6 may be different for the vortex elements and the

gradient transport elements. In this work, we use the same form for both.

The temperature can be calculated by direct integration of the gradient

along a determined path. As pointed out by Anderson [17], a convenient

expression can be obtained by expressing the temperature as a Poisson

integral in the temperature gradient, T- VG(x-x') T(x-x') dx'. Using

PEq. (19) for qi, we get:

N

T(x,t)- E qi(t) . 6(x-Xi)  (20)_L , i-i

,,I
0.
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where
--

r

while the relationship between f and K is as before. This expression is

convenient when used in connection with the vortex method since all the

functions involved in the sumation must be computed for the transport of

the vortex elements and with simple programming tricks, the increase in cost

can be minimized.

Results obtained for the temperature distribution in the shear layer of

Figs. 2, 3 and 4 are shown in Figs. 18, 19 and 20, respectively. At t - 0,

the temperature distribution is described by an error function, with T(x,O)

7i- - 0.5 (1 + erf(Y)). This choice is motivated by the fact that this is the

fundamental solution of the diffusion equation. Therefore, an initial

discontinuity in temperature would develop into an error function before the

perturbation grows and convection effects become important. The layer is

first perturbed by a sinewave by displacing the elements according to

Y-Y(X), and then the temperature gradient Q(X) is computed. The discrete

values qi(0) are obtained as follows: Since the temperature is constant

along the streamlines after the perturbation Y-Y(X), then T(X,0) - e(X) -

0.5(1 + erf(Y - Y(X)). From this equation we can recover the initial

distribution of P(X,O), and Q(X,O) as follows:

-! dY

P(X) - -Gau(Y-Y(X)) d

(21)

-'--L,., •Q(X) - Gau(Y-Y(X) )
a .

4ft.

'e4 .J
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where Gau is a Gaussian similar to Eq. (11a). These expressions are then

used in Eq. (17) to compute q. The values of qi(0) were initialized one

column at a time, i.e. for fixed values of X, to avoid solving N
2

simultaneous equations, and instead solve Nx of NY simultaneous equations.

The error associated with this approximation was very small since the

perturbation was kept at a low value.

In the computations, we used the same particles to transport vortex

elements and elements of the temperature gradient. This represents a

substantial saving since the kernel functions appearing in the expressions

of the velocity, velocity gradients, and temperature can be computed all at

once and the velocity is computed only for one set of elements.

S111.2. ENTRAINMENT IN A SHEAR LAYER

To quantify the overall change in the temperature distribution, we

define a quantity T, similar to the growth I, as;

T T - IT(x,t) - e(x)l (22)

T can be regarded as an average thermal thickness of the shear layer.

Within the linear range, the temperature distribution remains essentially

the same, except for getting shifted up or down depending on the local sign

of the perturbation. In Fig. 21, the natural logarithm of T(t) is shown for

three values of the initial amplitude of the perturbation. The accuracy of

the calculation of the temperature profiles depends on the initialization of

the vorticity and temperature gradient, and on the value of 6/h.

During the second stage, and with the rollup of the interface and the

establishment of a spiral center at the midpoint of the wavelength, a

complex temperature gradient develops as a result of the motion of the cold

fluid upwards and the hot fluid downwards around the spiral center. within

%.% . . ." ' .i .- '
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this stage, if the number of transport elements remained the same, i.e.

stretch was not accommodated by introducing elements where the local strain

is large, the temperature distribution would collapse very quickly. In the

problem of periodic shear layer, this collapse leads to values of T(x,+-,t)

< 1 and T(x,--,t) > 0. The reason of the loss of accuracy is clear from Eq.

(16). When the elements move apart, the accuracy of computing the velocity

gradient Vu deteriorates, and hence the new values of qi accumulate large

errors. Thus, while the calculation of the velocity field at the early

stages of strong stretch using a fixed number of vortex elements may be

acceptable for a short period of time, the calculations of the velocity

gradient and the evolution of a passive scalar will show unacceptable

errors.

To continue beyond the linear stage, the distance between neighboring

elements in the principal direction of strain, AX, must to be monitored. If

x > Oh, where 0 > 1, one extra element is added between the two original

elements and the total value of qi is redistributed equally between the

three elements. In the calculations, we used 0 - 1.5. Numerical

convergence, in which one systematically refines the numerical parameters

until no more changes are observed, was used to obtain these results.

The effect of the shear layer rollup on the temperature distribution is

seen in Figs. 18 and 19. Immediately after the interface reaches a vertical

position, an S-shape starts to form indicating that cold fluid has been

transported from the lower stream into the upper stream and vice versa.

0. , This phenomenon, known physically as engulfment or entrainment, relies

solely on convective transport and is observed when molecular diffusion,

which acts to dissipate the sharp gradients, is small. Fast entrainment
V,

with small diffusion leads to "unmixedness" of hot and cold fluids within

0

O ?

0 , .
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2.: the eddy core. With more fluid being transported to the opposite stream the

S-shape grows, reaching a maximum amplitude when the interface becomes

horizontal. At this moment, fluid with the maximum and the minimum

temperature has been entrained into the core, i.e. entrainment has reached

all the way to the free streams to bring fluid into the core of the eddy.

This is the stage of maximum entrainment when the core size reaches its

largest size and cannot accommodate any more fluid. In the case of c -

0.X, it corresponds to t - 8.0, which is at the end of the second stage of

development. To make the correspondence between the temperature profiles

and the evolution of the interface of the layer clear, we plot the latter in

¢* Fig. 22, showing the actual vortex elements that were used in the

computations of the interface. At this time, the interface has rotated 1800

around the spiral center. This is the first step in the process of

homogenization of the core.

As the core rotates further into the third stage, the inner part of the

interface develops a secondary instability that rolls up in a very similar

manner to the primary instability. This secondary instability is in phase

with the primary instability and can be envisioned by zooming in on the

intersection between the interface and the horizontal centerline of the

vlayer. Due to the elongation of the outside envelope of the core, the

wavelength of the secondary instability grows with time, as seen from Fig.

22. However, the amount of fluid within the elliptical envelope remains

constant, or decreases slowly as seen from Fig. 21 for the temperature

thickness of the layer. The growth of the secondary instability provides a

mechanism of internal entrainment within the core. During the growth of the

secondary instability, an inverted S-shape, or a Z-shape, forms in the

middle of the temperature profile, Figs. 18-20. The entrainment associated

4.

4",.
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with this instability turns the fluid in a clockwise fashion, making the

inside of the core more uniform. This is seen from the decay of the peaks

in the temperature profile as this Z-shape grows.

w. with another 1800 turn of the interface at the spiral center, a smaller

S-shape forms in the middle of the profile due to .-he onset of an even

shorter wavelength instability that is in-phase with the primary

instability. While the existence of the secondary instability was not

observed before in numerical simulations, its presence is clearly seen in

the experimental results in Fig. 9.

The onset and subsequent growth of successively shorter wavelength

instabilities continues, leading to a more uniform temperature distribution

* within the eddy core. An asymptotic limit to this process can be foreseen:

it is the formation of a temperature profile with the following shape: T -

T. at y > 6/2; T - T_, at y < - 6/2, and T - (T +T_,)/2 in between, where a

is the minor axis of the elliptical envelope at x - X/2. This shape has

been measured experimentally by Konrad [32], (see also Broadwell and

Breidenthal [331,) for mixing layer flows at high Reynolds numbers. This

is, to our knowledge, the first time it has been computed numerically.

By the end of the third stage, the layer cannot absorb any more energy

and a relaxation process occurs, during which the kinetic and thermal energy

are fed back into the main flow streams. This reverse action is accompanied

by the fluid leaving the core and moving back into the main streams at a

very slow rate.

III.3. EFFECT OF MOLECULAR DIFFUSION

The generation of large temperature gradients within the core as

", successive instabilities evolve gives rise to large molecular diffusion

fluxes which act to smooth out some of these gradients. While for most

04
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cases of interest the diffusion transport is very small relative to the

convective transport, i.e. the Reynolds number is high, diffusion plays an

important role since mixing at the molecular scales can only be accomplised

via molecular diffusion. Thus, the combined action of convective

entrainment and molecular diffusion leads to the homogenization of the

temperaturo within the eddy core. To simulate the effect of diffusion for

small values of a in the current model of a shear layer, Eqs. (15) and (16)

are modified by adding a diffusion term:
aT

3T + u.Vr - a V2T (23)

and
a + u.Vq - - q.Vu - q x w + a V2q (24)

where a is the non dimensional molecular diffusivity, or the inverse of the

Peclet number. At high speed flow, the Peclet number is typically 10-105

To solve Eq. (24) using the scheme that we have developed, a third

fractional step must be added, in which the value of q is updated according

to:

aqi V2qi (25)
at

without changing the shape of the core function or the value of qi" By

taking 6 - 6(t), and substituting Eq. (19) into Eq. (25), we find that

d62/dt - 4a. Thus, the core radius must change according to:

62 . 2 + 4 t (26)
O
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. where 6 is the core radius at t - 0 (for more discussion, see Leonard (11,

Ashurst [341.) The cores of the vortex elements and of the temperature

gradient elements become different with time.

Results in Fig. 23 show the temperature profile at T - 20 for the case

of X and c - O.lX , evaluated for - 0.0, 0.00001, 0.0001, 0.001, 0.01 and

0.1. Note that the temperature profiles of the first two cases are almost

identical, indicating that the effective diffusivity of the inviscid

calculation is of the order of 10- 5 . In the last case, the temperature

profile is similar to the case of pure diffusion, indicating that diffusion

proceeds at a rate faster than the instability. It is also noticed that fc

moderate values of a, 0.0001 < < 0.01, diffusion only affects the core of

*the eddies, making them achieve a homogeneous state faster.

Greengard (35], in his analysis of the core-spreading vortex method in

which a fixed number of elements are used to perform the convective

transport and their cores are expanded to account for the effect of

. diffusion, showed that the scheme does not converge to the correct equation

of motion except when the flow field outside the region IWI > 0 is uniform.

We have used a core spreading scheme to simulate the effect of diffusion in

the energy equation with two modifications: (1) the number of transport

elements which discretize the gradient field is increasing with time; and

(2) a is kept small. Utilizing an increasiiig number of elements to perform

the convective transport is essential since it is important to determine the

gradient field accurately, in terms of the location and strength of the

'F' elements, before the diffision effect can be added. In essence, adding

transport elements at areas of high strain allows the computational elements

to capture all the vorticity, and temperature gradient carrying fluid at all

times, even after the vorticity has been fragmented by the action of the
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strain field. Without this step, strain will create areas which are void of

elements, thus, diffusion cannot be represented.

In the particular application of a shear layer at high Reynolds number,

the flow field is uniform outside the area where jwl > 0, and this area

expands slowly by diffusion if a < 1. Limiting the simulations to small

values of a: (1) reduces the errors associated with the fractional step

scheme used to solve Eq. (24) (Beale and Majda [36]); and (2) reduces the

errors concomitant with convecting an element with the velocity evaluated at

its center while its core radius is growing. To accommodate this growth,

which causes the spread of vorticity in the direction normal to the

streamlines, one may be forced to add elements in the direction normal to

0 the maximum principal strain direction, and then redistribute the vorticity.

It is, therefore, clear that the scheme is only applicable when a < 1 and

for short time, i.e., at < 1. If these two conditions are not satisfied,

one must divide each element whose core radius is larger than a critical

value into a number of sepapate elements so that the convective transport

can be performed accurately. Since most interest in shear layer flows is at

high Reynolds number, or a < 1, and within the short time of development of

the convective instability, we feel that the current scheme is sufficient

for this application.

To define a quantitative measure of mixing in a single phase fluid with

thermal stratification, we observe first that mixing is only achieved by

molecular diffusion. Large entrainment fluxes bring the unmixed fluid

layers in contact along a larger interface; however, molecular diffusionO

"6 across this interface is what accomplishes the actual mixing. A measure of

mixing can be defined as:

- %
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M(tccc) - f OjT(x,t,cc,C) - T(x,t,O,E)Idx

Note that M(t,O,c) - 0, while M(t,cx,0) is due to diffusion only. In Fig. 24

M(t,cc,O.l) is plotted for various values of a and for X . It represents

mixing due to the combined action of entrainment and diffusion. At very

small values of cc, mixing is limited by the amount of diffusion across the

fluid layers which have been entrained into the eddy core. Since for these

-. values of cc the convective transport is faster than the diffusive transport,

mixing increases approximately as /cc. However, as a increases, and at

A longer times, mixing proceeds at a slower rate since it becomes bounded by

* entrainment of unmixed fluid into the eddy core which almost ceases by the

end of the second stage of rollup.
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IV CONCLUSICNS

In this work, the vortex element method is used to compute both the

early and late stages of development of an inviscid temporal mixing layer.

In this method, the vorticity is initially discretized among overlapping

element of radially symmetric cores. We find that using a scheme which

* depends on equating the vorticity at the centers of the elements with the

accumulative value induced by all elements is necessary to obtain accurate

results for initial vorticity discretization. We also find that to ensure

the accuracy of the solution for short times, the ratio of the

core/separation should be larger that one. very large cores introduce a

strong perturbation in the vorticity field, while smaller cores cause a fast

* deterioration of accuracy. Using fourth order Gaussian cores results in

better accuracy over second order Gaussian cores. However, we feel that the
.-

improvement in accuracy does not warrant the added cost.

As time proceeds, the distance between neighboring elements exceeds its

initial values due to the generation of strong stretch. This leads to the

computation of inaccurate velocities and is manifested by the irregular

motion of the vortex elements. To overcome this problem, the vorticity is

constantly redistributed among elements inserted along the principal

direction of strain to capture the local deformation of the vorticity field

and to improve the resolution of the calculations. This is achieved by an

insertion-and-interpolation process, which is applied where the distance

between the neighboring centers along the principal direction of strain

exceeds a threshold value. We show, using solutions for a shear layer

perturbed at different wavelengths and amplitudes, that this process yields

accurate solutions for the vorticity distribution at long times and after

strong strain fields have caused a severe distortion of the streamlines.

A%
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'9 This scheme enables one to accurately compute the local velocity gradient

which, while it is not required in connection with vorticity convection, is

necessary for the accurate evaluation of the convection of a passive scalar.

- The temperature gradient, distributed over transport elements which

resemble in their structures the vortex elements, are used to compute the

temperature distribution as the rollup evolves. Contrary to vorticity,

scalar gradients are not conserved along particale paths, thus, the strength

of these transport elements is changed according to the straining and

rotation of the material elements. The scheme is capable of capturing very

sharp gradients that develop within the core since the elements migrate

towards these zones by convection. The multiplication of these elements via

* stretch, which inadvertently mimics the physical process by which large

scalar gradients are genereted, provides a naturally adaptive grid to

compute these gradients. By expanding the cores of the transport elements,

the effect of small diffusivities can be simulated as a small perturbation

to the convection field. Diffusion, even at high Peclet number, is

responsible for generating areas of uniform temperature inside the eddy

since it acts to smooth out the sharp gradient created by convection.

-. The application of vortex methods to problems in which the no-slip

boundary condition along solid walls must be satisfied can be accomplished

.1 using the random vortex method (Chorin (371, and Sethian and Ghoniem [381.)

In this method, extra vortex elements are generated along the solid walls to

cancel the slip velocity, and the diffusion of vorticity is simulated by the
.9. random walk of the vortex elements. At high Reyolds number, a strong strain

field is expected to cause similar problems as described in this work, i.e.,

F, areas of large stretch will be depleted from vortex elements and accurate

resolution of the vorticity field may be lost around these areas. Extending

0.
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the insertion-and-interpolation scheme described in this work to the random

' vortex method requires: (1) adding a third fractional step, which must be

performed after the convection and before the diffusion steps, for the

redistribution of the vorticity field among elements arranged in the

". direction of principal strain; and (2) computing the strain field at the

center of the vortex elements in a Lagrangian form since, due to random

walk, neighboring vortex elements and neighboring material elements change

as time evolves. The implementation of these two steps must be preceeded by

careful formulation, and will require lengthy computation.

I
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*FIGURE CAPTICN

Figure 1. The growth of the perturbation amplitude I with time for the most

unstable case, X*, for three values of the initial perturbation

c/X - 0.001, 0.01 and 0.1, showing the linear range and the

saturation of the perturbation. Each curve is normalized with

respect to the corresponding value of I at t - 0.

Figure 2. The location and velocity of the vortex elements during the.*
rollup of a temporal shear. X - X , with c/X - 0.001. N(0) -

572, h - 0.3, & - 0.375, and at - 0.1.

Figure 3. The location and velocity of the vortex elements. Wavelength is4 ,

X , and C/X - 0.01. At t - 0, N - 440, h - 0.33, 6 - 0.4 and 4t

-0.1.

Figure 4. The location and velocity of the vortex elements for X - X , and

c/X - 0.1. All the numerical parameters are the same as in Fig.

3.

Figure 5. Schematic diagram showing how the vorticity is redistributed

among three elements when the distance between two neighboring

elements exceeds a pre-specified value. (xn'Yn) are the

coordinates of the new elements.

Figure 6. The total length of the interface, originally at y - 0, with time

for the cases presented in Figs. 2, 3, and 4, normalized with

respect to its length at t - 0.

Figure 7. The number of vortex elements used to represent the vorticity

field during rollup for three initial perturbations, normalized

with respect to the corresponding value at t - 0.

Figure 8. (a) The total kinetic energy of the perturbation based on the
2

perturbation velocity, (U(x)-u(x,t)) , and (b) The total kinetic

energy of the flow, u2 , for c/'X- 0.001, 0.01, 0.1.
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Figure 9. The evolution of the vorticity field with time, compared with the

experimental results of Roberts et al. (29] for the spatial

development of a small perturbation of a shear layer.

Figure 10. The growth of the perturbation amplitude for X - 10.5, c/X -

0.01. N(0) - 455, h - 0.3, S - 0.375 and at - 0.1.

Figure 11. The location and velocity of the vortex elements used in the

calculations of the case shown Fig. 10.

Figure 12. The vorticity field for X - 2 X , c/X - 0.01. N(0) - 540, h -

0.44, 6 - 0.5, at - 0.1.

Figure 13. The vorticity field for X - 2 X , c/X - 0.1, using the same

numerical parameters as in Fig. 12.

Figure 14. The vorticity field for X - 3 X ,/X - 0.01. N (0) - 818 and

the values of h, 6, and at are the same as in Fig. 12.

'.-

Figure 15. The vorticity field for X -3 X c/X 0.1, using the same

numerical parameters as in Fig 14.

Figure 16. The location and velocity of the vortex elements for two

perturbations, XI - X and X2 - 2 X , with c - 0.1 X for both

perturbations. N(0) 336, h - 0.55, 6 - 0.6 and At - 0.5. A

fourth order time integration scheme is used to transport the

elements.

Figure 17. The total amplitude of the perturbation of the case in Fig. 16.

Figure 18. The temperature distribution across the layer at the center of

the core, for X and c/X - 0.001. The numerical parameters are

the same as in Fig. 2.
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* Figure 19. The temperature distribution across the layer at the center of1 "
the domain for X and c/X - 0.01. The numerical parameters are

the same as in Fig. 3.

Figure 20. The temperature distribution across the layer at the center of

the core for X and C/X - 0.1. The numerical parameters are the

same as in Fig. 4.

Figure 21. The variation of the logarithm of the temperature thickness T

with time for the cases in Figs. 2, 3, and 4.

Figure 22. The rollup of the interface, defined by the layer which coinsides

with y - 0 at t - 0 for the case shown in Fig. 4.

Figure 23. The effect of thermal diffusion on the temperature distributionI
across the layer. Temperature is shown at t - 20 for the case

shown in Fig. 4.

Figure 24. Total mixing, M(t,c,0.1) due to the combined action of

entrainment and diffusion, evaluated for different values of a.
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Appendix II

The paper on "Numerical simulation of a reacting shear layer using the
transport element method" describes the formulation of the vortex element
method and the transport element method for a chemically reacting flow with
finite rate of heat release governed by Arrhenius chemical kinetics. The
application of the method to a ron-reacting spatially developing shear layer
and a reacting temorally evolving shear layer are presented.
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five time steps. The time step of tne (U1-UZ)/2, and Iis the wavelengt.n of trne larg

comptatins s t~ 0.5. Te plts xnibt a eddy. The corresponding Strouhal number is F
very clear an: accurate portrait of the rollup. 1/f ' 0.033. This is the same value ap tne

nDuring rollup, the vortiolty witnin the snear frequency of tne most unstable moce compute: frz:7
layer is attracted towards tne center of a large telna tblt hoyo ptal
eddy, entraining fiuic from. both sioes, an-- developing shear layer under tne concition F

*forming what appears to be a moving focal point of described above. Preliminary results for the
a spiral. Between neignboring large edaies, growth rate, average velocity an:
zone of strong strain is developing where teturbulent statistics were presented in study of
vorticity is depleted and the gradients are Go er, 7foth frcdse ly .growing. This "braids' zone can be described as a Gnimand Ng foth frcdsarly.
moving saddle point where locally the fluid flow The high resolution of the transport element,
experiences a separation into two streams; one method demanOs the use of a large number of
moving towards tne left an: the Other moving transport elements. Moreover, the number of

*towards the right with respect to the saddle elements grows rapidly with time due to the severe
stagnation point. Downstream, the process of stretch produced in the shear layer. This maKeF

* rollup continues until a stronger perturbation the computation of a wide window whicn contdins
forces two neighboring eddies- to interact in a number of successive eddies expensive. In the
pairing process. It is important to stress that next section, we direct attention towards a mode.
the algorithm of inserting elements as the strain. of this problem that requires less effort
field develops is responsible for maintaining the computationally while essentially preserving al>
organization of the calculation for a long time, the physical processes involved in the spatia-ly

developing layer. This is the temporal shea-
layer model in which a computational winaow t ,a&
moves at the average speed of the flow is impoe-
oh, a single wavelength while the eddy is growing.
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V. TEMP-RA1LY-DEVELCcINI, REA-TIN: 8 N
SHE.4. LAY--

Computation.' results snowing the evoutlor. Y"'-"of a large ea !v In d Fep- neer layer dre

presented in Figu-e 3. In this case, tne boundary ,

conditions are period::, :.e.. 'x,yt - ___

w2x- ,ytI ano u.x,y,*' - u x-,,v,t, wne- .. 1 1.0 0 -

the wavelengtn of the perturtatlos. Sre'
a e t a i l ed a n a l y s i s o f c n e e .'l .i t ic r, o f t n t - X E T.. . .. ..

,-. temporal, thermally stratifiec shear layer was 8 81" 27 it ,-
presented in Ghoniem et a. .,it wi not b'
repeated here. Tne qualitative resemancn2t
betweer the development of large eddies in a y C, y 0
spatial and a tempora. shear layr is clear-y seer,
by comparing Figures 2 and 3. Moreover, tne
snedoing freq.uency, i.e. tne frequency of the most -8
amplified mode, is almost the same in both case. 0.0 1.C 0.0 T .
However, the growth rate of the perturoatio. is

.* different since it depends on the velocity ratio X 8.8, -IM. = .00 X - 8.8, TIMS =

across the layer; a param~ter that aoes not appear 8 8
in tne analysis of the temporal layer.

in tne comptatior, of the tempord. layer, the
window is limited tc one wavelength and one can y 0y

afforz to use more elements within tre ao ir,. to v 0

imnrove the resolution. One can also conduct, , ,

Inexpens.vej, paranetri. studies on tne effect of
various physical parameters that appear in the -8 -8
model, Eqs.1-, Tn.s, tne temporal laver, wi.. 0
be used as a model for the spatial laver to study X 8.8 , TiME = 8.01 X - 8.8, TiME =
turoulence-combustion interactions in shear flow.

Figure =. Temperature cistriDut;o. aoro==
midsection of the large eddy shown in Figre

___ _ layer. Tne profiles show tnat after the
relaxation of the first rollup, a seconary

insta0:llty develops which forces the cce tnrci-.
another turn, thus creating a more raggec
temperaure distrioution. Moreover, it car,

TIME - 0.01 TIME 12.3: seen that tne rollup of the shear layer is try
mecnanlsm of entrainment that leads to strog

"ixing ennancement as the two f.uics djffuse
______across trie stretcned interface. Since roc_4

ansociated with strong stretch that reduces tn
gradients across these intertwining layers, this

ennancing the diffusion fluxes. Quantitativt.j,

TiME = 4.0 OME - 18.00 the rate of mixing can be expressed as M q n
dd, where q is the diffusion flux, n is tne unit
vector normal to the material surface, and da iF

the surface area element. Since for two
dimensional flow, da - dl, and since q / 61

constant, then M is proportional to (61). Tn,
*."." net result is that stretch by a factor ennances

" mixing by a factor . The quadratic rise in

TIME - 8.00 TIME - 20.00 mixing during rollup will have a significant
effect on the rate of reaction.

In the reacting layer calculations, the fu:Figure 3. Tne development of a large eddy in a
temporally groming shear layer at the same system of equations Is integrated using particles
conditions as in Figure 2. that transport vortex elements, temperature

,e gradient elements, reactant and product gradients
elements. At time t - 0, the vorticity layer and
the flame front coincide, and tne thicknesses of

Since the flow in unconfined, tne wavelength A Is the vorticity layer as well as the temperature an-

used instead of H to non-dimensionalize the species concentration within the layer are taker,
* length. to be equal. A small sinusoidal perturbation wit.

Tne temperature profile across the midsection amplitude c - 0.05 A Is imposed on both

of the eddy is exhibited in Figure 4. The rollup distributions. The first case to be computedcorsprbons T he foling aset of paamtee

brings fluid from one side to the opposite side, corresponds to the following et of parameters:

while stretch increases the gradient across each Pe. 200, Le . 1, Af- 1, Q 4 1 and Ta-10, and n i.

N 8
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: Tne co-reF ;cn_:- D., r e nim-, me, s.-e: at t, nn-- r:t~cL£, t, .- .-

a% . A' later... .. stages, this j -' i n . s,an: te'atu ra'ic a orosz tre aye- 1F anthe, ma.e . in,_, for" ,

p ap -;t' s where tre react - are.e-, d,.,* -
' " ~~Figujre- -nnwF n, re .tini Fne,] _ayer Fbrn - t, lnv,- ;o z- c:,s'ic.s the tn srem' ave- co'e almosF stops Its roatIon. At t '

At tn _ ea,-" F.° s, the ezz, Frongy re-eT.ieF o Drn .ng of tn, Ezc,, t. -t F. _A.riu pr te .og s the ne soa.. ea e' n

t n, the t,* non-ea- tng o s': . in Figj-r tO b rn- to close tn:s ent-y wav an -- tr.,o f ,
h - eve- , as ro /luJ; 'a t F, t e f- lo'nnt In a

Tnt effect of he" r~.eas .

of the eOzy, wnicr F generate: u. rc_.-:[' " :ii[{i: : . the neer ..ye,, car. b: e=,froz 7,= ~ ~ t.

prc fi .eF a-ross tne mi sect or, of tr, w V .s, .,

~ o £..c~tnt l et:s n,77- ;s .n-,.

...-- -.. ' -. As reactan*. ar entra 1e:

* :~e .0Time '0.3

"V Tim - 3.50 " . ------ -'

Tim 35Time 
1 4.06

1fZn E:IsS .. ... ' W.T 5c.

Ti-e 03

.- Figure 5. oedvelopment. c. a arge eda) ir, a y y _.
-',reacting temporal shear layer at the sae C

• .conc~tiors as or. Fogur c. .ne "0.l ic one define. .

- '" the flame front.

-'A.

7

' observec: (1} a swelling, due to the concorotant - ___________ -20.increase in the rate of neat release, continues as - S

more reactants are entrained onto the burnong
core; (2) thheowth of tn instaility, asZ

measured by tne angle between tne major axos of Figure . Temperature dostributon, across thethe elliptical structure and the man stream midsection of the reacting large eddy snown"
direction, is encumerec 3ecause the voumetric Figure .

expansion causes the vorticity intensity to
decrease and the eddy to become weaker ant les scoherent; and (3) the eddy loses its symmetry and core of tne growing eddy from the rigr side,a
becomes eccentric due o the asymmetric expansion shaped flame is formed. At the initial stages

A.,. and the generation of a non-baroclinic torque where the rate of entrainment is faster than the
Sassociated wit heat release. As more of the rate of burning, the flame extends deeper into tr,e
initial core is burnt, the fluid inside the eddy lower stream. As the reactants within this zone
ceases to spin, contrary to tne nonreacting cae, burn, heat is released within the core of the
Meanwhile reactants move through te side to enter rotating eddy, causing the eddy to swell, wnieo the reaction region. These results agree maintaining its elliptical shape. The non-qualitatively wir the experimental results of barocinic vorticity generated around tnis zone

. Keller and Daily on the reacting mixing layer at causes the observed eccentricity of the largehigh equivalence ratios eddy. Tne temperature profiles show that the

On the same figure, a solid line is plotted higher order instabilities observed in thethrough points of maximum reaction rate. The .ne nonreacting case are suppressed by the heat
, indicates where the flame front, or the maximum release, and that the core of the eddy stops its

heat release rate, is within the shear layer. rotation. As the reactants within the eddy burn ,

I ectns Ti rsls nth omain fBelow this line, the product concentration the flame leaves the structure and moves into the

aprahsunttnhhetmeaue reachesT reactant. This results aremit nng ts lip in tnpe e nmton-o

higheualniy raton . eddy. te rtemperature profile which is very similar to the

During the early stages of rollup, the line of temperature profile at t-O.
maximum reaction rate follow. one of the material To study the effect of tne shear aye or. the
lines closely, i.e., the growth of perturbation chemical reaction, we compare the rate f burningBelw tin in, te podct oncntatin te lam leve th stucureandmoes ntoth
aprahsuiyadtetmeauerahsT.ecat.Ti eut ntefraino

p eprtr rfl hchi.eysmlrt h

Duigteerynae frlute ieo eprtr rfl 't0



fo a f amE< movinF tnro g', a nea 1ayer, i.., a

rea. ..:ng sneae ayr -, nr c..ce,, fiam- m: ini

f..a -r. Res.i=t fo
•
- tne laminar flame are ottane: _

aF5!"g the sac E t)- . t X_ - _, Tn
rate of turning is cefinec in terms of the tota.
maFs of proc.uzts generate: s!ze t . I. FlgJr' j

de;icts the tct-I mar tirn%, M, for Dotr -.FE,

20 

O

-o.5 i_________

-0.5i

M / L f _

10 
0

/I .-0.5-
/ 20

7 0
LF Figre 5. The temperaturt T, rtr - rc.* . ,

expansior. rate e a~ong layer in tn rz ,.
0 edcy.

t 15 25

To furtner analyze tne res.~lts, WEa .: '
Figure 7. Total mass of procuots M formec since Ter ur the anaz te F, n

p temperature T, the strain rate ., anc .--
t i , in the reacting sFear layer, labeilec as expansion e, along one particular layer cf f-,::
RSL, and in tne laminar flame, labelled as LF, at within the reacting eddy. The rate of ex;,an. 2!
tne same concitions, anj the total length of the iF an indication of the rate of pruout frmr.:.
flame in the reacting shear layer of Figure 5. i.e., tne actual reaction rate. Figa-eF 8 ar.:

snowing clearly the different stages of burning in
tne reacting shear layer. At the early stages,
during the linear phase of development where the
stretch is negligibly small, the rate of burning
is linear and identical to that of a laminar m
fiame. As the layer starts to roll up, the area
of the reaction surface increases and the flame is *
convoluted around the growing eddy. The increase
In the flame area due to convolution is nearly
linear, as shown in Figure 7. However, as
indicated by the Figure 7 , the products form at
almost a quadratic rate during this stage. Tnis 0
phenomenon can only be explained by recalling that
mixing is enhanced as the square of the stretch,
and that in this case of fast chemistry, the rate
of burning is governed by mixing.

At later stages, around t - 20, the amount of .5
products forming is almost nine times that which
forms in the laminar flame. Due to flame
convolution, the reacting surface area has
increased by three folds. Since stretching a 0

layer of material by three times its initial
length decreases its thickness by the same amount,
and the fluxes across it increase by three fold as
well. This augments the rate of mixing by nine
times over the non stretching case. When the L
chemical reaction is fast, as in this

case, the material mixed reacts and the
rate of reaction increases by the same rate as the Figure 9. The temperature 7, strain rate s, anc
mixing. Tnhis is what has been labelled "mixing-
controlled reaction" in the turbulent combustion expansion rate ; along layer 8 in the reacting
literature. eddy.
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-- --- - - - -'.~ -2O -j. -..- :-

f.F g2 t T ... . .

reouce: _ c' n ~ :~

5 tgeF., tne -ea- on ; r3--

-. 5.:le-. so~,as r' D,. r.~. F 2 i' 2 .f

- X

Figur lay -r an: in trne re-*.i-E e_,:, cf

sno. tnepe plotsF for layerF - an- S, rezp '-. vt l,.
whior. are snown :n Figure 1.. Figu-en 6 an : 9
snow. a po i Li1ve corre -ati1on. between tnE
temperature an the strairs rate; eac7. temoperature _____________

pe.- correnponcF tz; a rn~x mur' i. the st~rai n rate 7.

F r . 7ne tota. mras 5 f p r c:.z fc-..

VORTICITY LOCATION 10 ~ J ~ ':2a: sss

cond.tiornF .Y.

RSL L

.1 0.? fA 1,e

___Figure -3 7,ne total mass of pr33cs fro-

s ince t 0.C for a reacting shear layer w tr. f,

0.25, RS!-, and a larrinar flame at the sat

conaitio., LF.

13.2
X parameters Shown a Continuous linear rise in tnE

mass of products. if the frequency faotor is
Figure 11. 7ne ecdy in a reacting temporal shear lowered further to A . 0.25, extinction ocourF
layer at the same conditions as in Figure 5 but
witn Af .. t - 17.57. earlier at around t - 10, an shown in Figure'.

f Meanwnile, the corresponding laminar flame nhz..
linear rise in 1$. Sinoe the strain rate

curve and vice versa. Moreover, Figures 8 and increases with time, the extinction phenomrenon i

9exhibit a strong correlation between the local ecutrdeale nteDmkhe ubri

ntralln rate and reaction rate; as the strain rate reduced.

decreases, the reaction rate decreases and the To explain what happens around extinction

temperature drops. These results indicate that more detail, we refer to plots of 7, s, and e,
the rate of burning and temperature are positively Shown for layer 3 in Figure 14~ and for layer i,;
correlated with the strain rate. As the layer Figure 15, both for A f 0.5. Tne plots exn;U.t
stretChes, the diffusion flux of tne reactantsth vai io ofhehrep amerztL-I
into the flame increases and, since chemistry n the57 vareatio er of t e t pa aers at shw n
fast, the rate of burning increases. Under 1.7 h emtyo h w aesi hw.i
compression, the reactants diffusion fiux is Figure 16. Plots for e Show that the expanF:o .
reduced and the amount of burnt mixture, and hence has almost stopped.
the rate of expansion, is reduced.

11

I A



'" ' -5 7 *. ,5 7 -

1 --- ' V .'O

0r 7.,.-',. I. ,

,\s.. Figure 1E. Layers 3 an! 5 in th rear:tng ec.

Fig~e LFigure 1 .

witn strain due to the increase of the heat fi.x

Figure l. The temperutu'e 7, strain rate , an. out of the layer ano the reactants f..x In._ t.
layer. Since cnemical reactiDn s.c, tre nez

expansion rate E along layer 3 in the reactini loss anC the gain In reactants cannot tt
eddy in Figure 11.  compensatec by chemical neat release, ledz.n

flame blowojt.

* * Vl. CONZLUS13N2

Advance numerical methods enatle one t:;

integrate elaborate ano oetallec moielsF, wrl:.
1cannot be done analytically, so that complex

mecranisms may be revealed ano analyze:; anz
provide detailed information about the flow fce.

': wnich may not be possible using tracition.

0 ' experimental techniques. Computer output, rcn i.

data, offers a challenge in how to extract
valuable information about the phenomena under

investigation, and how to present these

-0 6 information in compact form. Finding out the

0 60 appropriate diagnostics to probe computationa.

results is half the way to reaching the

conclusions.
In this article, we have introducec tne

transport element method; a Lagrangian particle

scheme based on the discretization of the

0 _vorticity and the gradients of the scalars into

finite elements. The particles move alo:,g

material lines, in accordance with their transport

equations. As strong strains develop in the

-1 dynamic field, the finite elements may change

0 60 their shape or configuration to accommodate the

6distortion which is produced by these strain

fields. In case of chemical reaction: (1 the

Figure 15. The temperature 7, strain rate s, and strength of the elements, i.e. the source

expansion rate along a 5in the strength, changes according to the rate of
layer 5 reacting reaction; and (2) the chemical heat release

eddy in Figure 11. induces volumetric expansion and non-baroclinlc

4 -vorticity into the dynamic field.
The simplest model which can be proposec t-

This in In spite of the fact that T corresponds to study turbulence-combustion interactions contai.

five parameters: (1) the Peclet number which
maximum reaction rate along most of the layer. defines the ratio between the rate of convectiveCtrary to n te caof A the valuht cresofefns the ep ratios betee the ealtnmer coneive

Contrary to the case of A - 1.0, the values of 7 and diffusive heating; (2) the Lewis number wnicr.

and s are now negatively correlated, i.e. represent the ratio between the rate of heat an:

mass diffusion; (3) the frequency factor which
temperature maxima correspond to minima in s as defines the rato between the rate of cemical

shown in Figures 1 and 15 .It is also observed reaction and mass convection; (4) the activation

that ; and e are negatively correlated, leading to energy of the reaction; and (5) the enthalpy of

a situation in which strain acts to extinguish the reaction. The outcome of these interactions can,

flame. This indicates that the temperature drops thus, be presented on a five dimensions spa2e o

12
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Appendix III

The paper on "Vortex-scalar element calculations of diffusion flame
stabilized on a plane mixing layer" describes the scalar element method and
its application to a diffusion flame with low heat release.

.........
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ABSTACT models and in obtaining resulcs that a- ri

agreements w;tn ex -re r meas. e-'ts.
The vortex-scalar element method, a scheme However, in complex systems, Modelling is

wi util:Zec vertex elements to d'sc-etize the difficult because of our lack Of Knowledge on tre
regi:n of n:-- vort:city and scalar elements to detailed dynamics of the flow. Furthermore, sinr.-
represent species or temperature fields, is most of the interesting dynamica benavior of the
ut!i.zed in tne numerical simulations of a two- flow is modelled a priori, sucn features are not
" d e's-na reacting mixing layer. lomputatlons exhibited from the results of numerical
are perfcrmed for a diffusion flame at high computations based on turtulence models, and thus
.._ n.. s e..t nubers witout resorting to can not advance our understand:ig of turbulent
turb-lence models. In the non-reacting flow, the combustion.
mean and flu ctuaton profiles of a conserved The progress in numerical methods arn the
scalar snow gucd agreement with experimental availability of supercomputers have nad a rao
meas-urements. Results for the reacting flow Impact on turbulence research. Improved accuraLy
indicate that for temperature-Independent of the numerics and increased storage anZ
kinetics, the chemical reaction begins immediately computational speed have made it possible to sc ve

* downstream of tne splitter plate where mixing the appropriate transport equations governing
starts. Results for the reacting flow with turbulent combustion directly without the need fo-
Arrhenlus kinetics show an ignition delay, which modelling for some limited parameter range. Such
depends on the reactants temperature, before model-free "simulations," in comparison with
significant chemical reaction to occurs. Harmonic calculations utilizing turbulence models, have the
forcing changes the structure of the layer, and advantage that the physics of the problem is not
concomitantly the rates of mixing and reaction, in modelled a priori, but is recovered directly from
accordance with experimental results. Strong the computed results. Their results can be used
stretch within the braids In the non-equilibrium to understand many important mechanisms of

kinetics case causes local flame quenching due to turbulent transport and its direct influence on
the temperature drop associated with the large chemical reactions. Furthermore, since the
convective fluxes. instantaneous behavior of the variables are known

at all points and at all times, accurate

simulations offer a good method of probing the

I INTRODUCTION flow when experimental techniques may fail.
Ultimately, by validating the results of the

Turbulent diffusion flames have been the simulation against experimental measurements, ab

subject of extensive experimental and theoretical initio predictions will be a reality.

% investigations during recent years (for a review, Numerical methods have been used in a variety
% see Bilger [1]). In most of the theoretical work, of forms for the simulation of turbulent flows in

turbulence models are used to close a system of complex configurations. A recent survey can be
averaged transport equations which describes the found in review articles [9,10]. In reacting
statistical behavior of the aerothermodynamical flow, three approaches are used: (1) finite
variables. Moment methods [2], eddy break-up and difference methods, (2) spectral methods; and, (3)
mixing controlled models [31, flame sheet vortex methods. In the first approach, the

./. approximation [1], assumed probability density variables are defined on a grid and the transport

-... function (PDF) shape methods [5], solutions based equations are approximated by discretizing the
on modelled joint PDF of scalar quantities [6,7], derivatives on the grid nodes. Examples of this
and based on modelled joint PDF of scalar and approach can be found In the work of Corcos and
velocity [8] are examples in which turbulence Sherman [11] who used a projection method to study
modelling have been used for the closure of the temporal evolution of a periodic shear layer,
equations governing the statistical quantities, and in Grinstein et al. [12] who used a flux-
Much effort has gone into constructing accurate corrected transport scheme to simulate the

,e. development of coherent structures in a two-

_ _ _ _dimensional spatially evolving shear layer and

examined their effect on mixing.
Copyright @ 1987 by A.F. Ghonlem. Published by

, the American Institute of Aeronautics and In spectral methods, the variables are
Astronautics, Inc. with permission. expanded in series of harmonic functions that
, satisfy the differential equations on a number of

.' Associate Professor, Associate fellow AIAA. collocation points. Riley et al. [13] used a
Reeachpseudo-spectral scheme to study a three
Research Scientist, Flow Research Company, dimensional temporally-evolving reacting mixing

Kent, Washington, Member AIAA. layer assuming a constant reaction rate, constant
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re' c n t'e -- of on te fc-.,'a, 'f the model an! n ''

mlx:ng lay-? fr a constoat reation rate. The schemes, and p-esent some preli7nr> vald .
i:.ter":iv bee f r.I dyns-: s and the chemical studies and inte T"-tations of the resits.

r t ,Is n.'e- e :e":neohe t. in Section >, the geomt:rcal cf:- EV'i
et al *-[ usa.t.. san metnod tc cor; -e a of a spatially evolving mixing lave is ;"esenteC,

- ms:nx layer wih an A-rnenlls an. the forrmu 4on of tne prcte ano cf th-
-re:ctlon and constant density to assess scheme are des-:.roed. Results of sore sa., n

the effe:ts of large coherent structure on the Calculations are given in Section 11:.
! lo_ extinction of the flae. Extension to Computations of a non-reacting mixing layer is
soat:aliy-g"cwln£7 laers was lnitiated by ivi and performed first in order to cneeK on tne accuracy

us:n a hytrid pseuco-spectra! seccnd of the method by co-paring its reas.tt with
ore- finite difference scheme. In all cases, tne experimental measurements at the same con:!tnirns.

rev'" e- was Kept at small values, C(2, Prelimrnanry results of a simulation. of a reactnz
lim:ted by tne g-:o reslution and the number of mixing layer in wh'ch the two reactants a-e

ha-mnic modes. introduced in different streams are presente-
In the thi-d a;pr3ach, vortex methods are next. Both constant rate kinetics and tempeature

used. These sonemes are grid free, the transport dependent kinetics are considered. In bothn cases,
of the variables tage place In a Lagranglan" form, the :nfluence of the coherent structures or tre
and the solution is not restricted by the geometry finite rate chemistry is assessed ant in the-
of the confinee - n. Therefore they can provide second case, the non-equilibrlu7 effects in the
accurate sln~latIons for high Reynolds number, reaction rate are examined. In the constant rate
spatially g-owing flows. Moreover, vortex methods kinetics calculations, the influence of harmoic
optimize the computational efforts by distributing forcing at the Inlet of the mixing layer is

computational elements around regions of high investigated. This study was motivated by recent
vorticity. Tre apclicat:cn of the method in thin experimental observations of Roberts and Rosh
premixed flame calculations with a finite density [21] and numerical computations of Shoniem an ,g
jum.: has been reported by Ononiem et al. [17] and [22]. Tne paper is concluded in Section IV win a
Setnian L18], among others. In these summary of our new results and suggestions for
calculations, the vortex method was employed to future developments.

* compute the flow field, and the dynamic effect of
combustion was represented by the propagation of a
thin interface at the laminar burning velocity II F0RMULATI0N AND N'bERIAL S
acting as a volumetric source.

Vortex methods were also used in simulating A two-dimensional, confined, planar mlxing
*diffusion flames in connection with a finite- layer is considered. A schemat~c diagra. for '.I

* difference approach for the treatment of the flow field is shown in Fig. 1. Two initially
scalar variables. Ashurst and Barr [19] used the unmixed reactants, fuel F and oxidant 0, a-e
vortex method to compute the hydrodynamic field present at small concentrations in the top hip'.
and an Eulerian flux-corrected transport algorithm speed stream and bottom low speed strean,
to compute the diffusion and convection of a respectively. We make the following assumptIons:
conserved Shvab-Zeldovich scalar approximating the (1) the heat release is low so that its effe t ct
shape and convolution of the flame in the limit of the dynamics of the flow is negligitle; ( .
infinitely fast chemical reaction. lin and Pratt Mach number is small: (3) the free sw-.-
[20] used the random vortex method to simulate the concentrations of F and 0 are equal an!
large-scale motion and a Monte-Carlo method to (4) the molecular diffusivities ar cc. 2
calculate the time-dependent probability density constant; (5) the viscosity is th'
function of the scalar quantities for both gaseous streams; and (6) the chemical rea " . .
and acqueous mixing layers. The PDF transport and 0 is single step, irrever,,:
equation, however, required a closure model for order. The density is, the-efc-.
the molecular mixing term.

From this short review, it is clear that
*' numerical simulations have played an important

* role in elucidating the physics of turbulent
reacting flows, and that there is a continuing .. %
need for more model-free simulations in order to
explain better some of the interesting physical U
phenomena that have been observed in laboratory
experiments.

In this work, we extend the vortex method to

study non-premixed chemical reactions. A vortex-
• scalar element method is developed to treat both g.
- the hydrodynamic and the scalar field in a 2 C0

Lagranglan sense. The fact that a chemical
reaction is truly a tagrangian process, i.e., it -

occurs when the particles (or macroscopi-
*' elements) interact as they flow, motivate the

Implementation of Lagranglan mnthodn f
simulations of high Reynolds njmTne r' '
flows. The method Is capatl- h--I . 1

,*j variety of initial and 1.' n1~y "
not llm:ted to s, f *

.. .. . II I lIII i iI0=
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the transport equations of the hydrodynamic field is unity, another conserved scalar can be
and the scalar -- temperature or species -- fields introduced, BpT= cF- T/Q, and the solution of Eqs.
are decoupled. The equations governing this (6) and (7) for c and B will determine the
system are: p

behavior of all the scalar quantities, cF , c0 ,

F 0 --- P (1) cp. and T.

V - W(Zt) (2) 11.1 THE VORTEX SCHEME
In the vortex method, the vorticity field is

* +L V
2
. represented by a finite number of vortex elements

u R-e V-L (3) of finite cores:

2
1T + u . - L V W(x't) - r r1/6 f(x (8)

t - V 7 Q Da W () - Z T i )-(8)
where rI f w dA, is the circulation of a vortex

S+uI 2element and 6 Is the core radius, while I is the

Vcj =- V2 o - Da (5) center of the element. f represents the vorticity
at Pe Le distribution associated with a vortex element, or

the core function (Chorin [23] and Hald [24], and

p 1 V2cp Beale and Majda [25].) The velocity field is
- u . Vc p + Da W (6) obtained by solving Eq. (2) using the discrete
t Pe Le vorticity distribution:

where P indicates products and W F e 0 exp(- u - I ri K(x-X i ) K(X-X i ) + up (9)

Ta/T) is the reaction rate, written In terms of where K(x) - -(y,-x)/r
2  

is the kernel of the
the rate of generation of products per unit mass. Poisson equation, K(x) - f r f(r) dr is the

u = (u,v) is the velocity, x - (x,y) and x, y are circulation within r, and r - jlx. up is an
the streamwise and cross stream directions,

respectively, t is time, * is the stream function irrotational velocity field added to satisfy the

defined such that u - av/By and v - - 3*/Bx, w - V potential boundary condition; up . 7@ where V240

x u is the vorticity, c is the concentration per

unit mass, T is temperature. V-(a/Bx,a/By), and 0 and u.n = 0 on solid boundaries while u.n - U at

2 2/2+ 2/2 the inlet, n is the normal unit vector. For the
V Va/ax a/By Variables are non confined shear layer, the boundary condition at x
dimensionalized with respect to the appropriate - 0 is: u - Ul for y > 0 and u - U2 at y < 0,
combination of the total shear aU - Ul- U2, the while y = 0 is a vortex sheet of strength aU- Ul-

channel height H, the free stream concentration of U2.

F, cFo, the free stream temperature at x - 0, To. In this work, we use Rankine vortex elements,

In Eq. (5), J - F or 0 for fuel and oxidizer, i.e., the vorticity of an element is constant

respectively. Re - aU H/v is the Reynolds number, within the core and zero outside, f(r) - 1/w for r

where v Is the kinematic viscosity. The reaction 5 6 and f(r) - 0 for r > 6. Correspondingly, K(r)

rate constant k - A exp(-Ta/T) where A is the - r2121 for r S 6 and K - 1 for r > 6. Moreover,
frequency factor, and Ta is the activation energy, the potential velocity field Is obtained by

non-dimensionalized with respect to (RTo), R being conformal transformation. Thus, the physical
the gas constant. Q is the enthalpy of reaction, plane is mapped onto the upper half plane and

non-dimensionalized with respect to CpTo, where Cp image vortices are used to satisfy the potential

is the specific heat at constant pressure. Pe - boundary conditions. The form of the mapping
MU H/a Is the Peclet number, where a Is the function for the confined shear layer is given by
thermal diffusivity. Da - A cFo H/aU is the first Ghoniem and Ng [22).

Damkohler number. Le- a /D is the Lewis number. The motion of the vortex elements must be

Since Eqs. (J), (5) and (6) are similar, constructed such that the vorticity field

there is no need to solve them all if the scalar satisfies Eq. (3). This is accomplished by

concentrations cF, c0 and cp are normalized in solving this equation In two fractional steps:

such a way that their initial and boundary Convection: L u.VW - 0 (10)

conditions are identical. This is accomplished by

the use of Shvab-Zeldovich transformation [). w
Introducing conserved scalars BFP = cf+ c+ and Diffusion: Lt - R W (11)

0 P 1- (c0- cep), we get: In the first step, the convective transport

of vorticity Is Implemented in terms of the

u 1 V
2
8 Lagrangian displacement of the vortex elements

t j P L (7) using the current velocity field computed from Eq.(9). In the second step, the solution of the

for j - FP or OP. Since 8Fp and O have the same diffusion equation is simulated stochastically by
the rando., walk displacement of the vortex

Initial and boundary conditions, 0 FP= OP= 0. elements according to the appropriate population.

The finite rate kinetics effects can be taken Into Thus:

account by considering the transport equation for xi(t*at) = j1 (t) r U(Iik)at in, (12)

the product of chemical reaction, Eq.(6), and Eq. k

(7) for a conserved scalar. If the Lewis number

3
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for i - 1,2,...,N, where I k is a k-th order time- Reaction - (17)

integration scheme and n is a two dimensional

Gaussian Convective and diffusive transport are taken

random variable with zero mean and standard into account in a similar way as in the vortex

variation .'2t/R . For more details, see Ghoniem method, i.e. by the Lagrangian motion of the
and Ng [22), Ohoniem and Gagnon [26). scalar elements using the velocity field u,

The no-slip boundary condition at the walls computed using Eq. (9), and the random walk
Th satisi bonarytin dtone t e wn s t displacement of the elements using a set of

is satisfied by generating new vortex elements to Gaussian random variables with zero mean and
cancel the induced velocity by the vorticity standard deviation /2-at/Se (Ghoniem and Sherman
field. Here, we generate vorticity only at the [28).) If X is the center of the element I,
point of separation, i.e. at the tip of the ti
splitter plate since the growth of the boundary then,
layers along the channel walls at these high t)
Reynolds numbers is small. At each time step, the xi(tat) - Xi(t) + r U(Xik) at + ()
new vorticity ar - -aU Um at, where Um - (Ul Chemical reaction changes the amount of
U2)/2, is consigned to No elements of strength reactants carried by the element according to the
ar/No and added to the field at points ax - Um/No integration of Eq. (17),
apart downstream of x - 0.

The effect of the numerical parameters on the si(t+at) - si(t) + W at (19)
accuracy of the results was investigated by i
Ghoniem and Ng [22]. Their results emphasized the However, the reaction occurs only when the
importance of using a high order time-integration elements are close enough for molecular mixing to
scheme with k-2 to avoid excessive numerical affect their composition. Therefore, at every
diffusion in the vorticity field. The value of No time step, the distance between the centers of

was also found to be appropriate in order to each two elements of F and 0, axi - -Xj I is
obtain well-defined eddy structures after the
rollup and the first two pairings. The second computed. If aXiJ 

6
D' where 6D=O(1/Se) is

pairing is accomplished within the domain of 0 S x the diffusion length scale, the composition of
S 6, therefore the computational domain was each of the two elements changes according to Eq.
limited to Xmax = 6. Downstream of Xmax, the (19). The initial distance between neighboring
vorticity was deleted. Varying Xmax showed that elements must be small enough to allow enough
the effect of deleting the vortex elements interactions between the elements. This limits
propagates about one channel height upstream, the maximum value of the Peclet number that can be
hence the results are accurate only for 0 S x S 5. economically used in the computations to 0(0000).

11.2 THE SCALAR ELEMENT METHOD The scheme, while providing an approximate
In this scheme, which is a two dimensional solution of Eq. (12) in a stochastic sense, mimics

extension of the random element method of Ghoniem closely the actual physics of the reaction
and Oppenheim [27], the scalar field is process. This is achieved by using the lagrangian
represented by a set of elements each carrying a formulation of the transport equations and dealing
finite amount of the scalar field: with the chemical production terms in individual

s(x,t) - E Se S(x-Xi) (13) particles.

where s is a scalar field, being the temperature
or species III RESULTS AND DISCUSSION
concentration, s Iis the strength of an element,

The computer code, developed by Ghoniem and
defined as the amount of scalar carried by this Ng [22) for vortex simulation of a non-reacting
element and V(.) is the Dirac delta function. sa shear layer, was vectorized In order to take

- 1/6A f s(x,t) dA, where 6A - 6x6y, and 6x and 6y advantage of the computational capability of a
are the distances between the centers of CRAY-XMP. The scheme, being explicit in time and
neighboring elements in the streamwise and cross requiring mostly non recursive computations, can
stream directions, respectively, and Xi is the utilize this capability efficiently. The dynamics
center of the element, If s is an active scalar, of the non reacting layer was investigated in

detail In the work of Ghoniem and Ng [22). Here
its transport is governed by: we concentrate on results pertaining to mixing and

as 1 2 + to a chemically-reacting layer.

et S

where Se Is the ratio between the diffusive and 111.1 NON-REACTING MIXING LAYER
convective time scales of transport of s, Se - Pe Results of a typical simulation, presented in
con - TimandSePe s Le o f raport of she scal terms of the velocity and location of all vortex

fors -T, nd e- c L ifs-c Inthescaar elements used in the computations, are shown in
element method, this equation Is solved in three elmnsudintecptaos, rehwnI
fractional steps: Figs. 2, 3 and 4 for the cases of Re - 24000, Re -

f000, and Re - 1000, respectively. Each vortex

as element is depicted by a point, while its velocity
Convection * u • Vs - 0 (15) relative to the mean velocity is represented by a

line vector starting at the center of the vortex
element. The velocity ratio across the layer at

Diffusion V (16) the inlet Is U2/U1 - 1/3.

a4
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Figure 2. Vorticity field at Re = 24000, Figure 4. Vorticity field at Re = 4000,
U2/Ul - 1/3. U2/Ul - 1/3.

flu -W. number, except that at the low Reynolds number the

eddies are slightly larger due to the dispersion
" of vorticity by diffusion; and (5) the computed

velocity statistics show good agreements with
S- - --- experimental data, indicating that the fundamental

mechanisms of the shear layer are two dimensional
111.1.tm and, hence, the numerical scheme is capable of

TIN - predicting the large scale features accurately.

=_I - .- V-401% To study entrainment, a passive conserved

scalar with a normalized concentration value equal
- _-- 4- to zero in the high speed stream and equal to one

in the low speed side is introduced at the inlet

W L mW- RM section. At each time step, 19 elements are

TIN - SLintroduced in each stream. The initial distance
4 between two neighboring elements in the cross

S - stream direction is taken as 6y - 0.021. The timestep at 0.1, thus the distance between the

" elements in the streamwise direction is 6x - 0.05
on the average. Since diffusion is more critical

Figure 3. Vorticity field at Re 1 10000, in the cross stream direction, 6y is chosen to be

U2/Ui - 1/3. smaller than 6x. A case with 6y - 0.016, using 25
elements in each stream was computed, showing no
significant change in the overall behavior.

Figures 5, 6 and 7 are obtained for Reynolds
number, Peclet number and velocity ratio 10,000,

Results show the formation of large vortex 4,000 and 1/2, respectively. Figures 5 and 6 show
eddies by the rollup of the vorticity layer that the velocity and location of all the vortex and
emanates at the splitter plate, and the subsequent scalar elements respectively, while Fig. 7
pairings of these eddies into larger structures, exhibits the strength of each of the scalar
The rollup of the shear layer was investigated in elements at the non-dimensional times of t - 28,

Ghoniem and Ng [22) by analyzing results at a wide 29 and 30. In Fig. 6, the dots represent the
range of the Reynolds number and at different fluid from the high speed side with normalized
boundary conditions. Their analysis show that: concentration c - 0, and the open circles
(1) the rollup is due to the growth of represent the fluid from the low speed side with c
perturbations by the Kelvin-Yelmholtz instability - 1. This figure indicates that the rollup of the

O mechanism, and the shedding frequency corresponds vortices and their subsequent pairing entrains
to the most unstable frequency predicted from the fluid from both sides of the free streams into the
linear stability analysis of a spatially growing cores of the vorticity layer, which results in the
layer; (2) pairing, which is associated with the enhancement of mixing between the two streams.
local subharmonic perturbations, results in a Entrainment asymmetry is observed as more fluid
step-wise increase in the size of the vorticity from the high speed side is present in the low
layer as two eddies merge; (3) The two sources of speed side than the opposite (Koochesfhani [29]).
the subharmonic perturbations are the downward The instantaneous profiles of the
motion of the layer and the monotonic growth in concentration field are averaged over a long-time
the size of the eddies downstream; (4) the period and the statistical values are compared
intrinsic dynamics of the instability is not with experimental data in Figs. 8 and 9. Figure 8
strongly affected by the value of the Reynolds shows the mean value of the concentration, cm, as

5
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a function of (y-y0 )/(x-x 0 ), where y0 is measured

at cm - 0.5 and x is the virtual fin[. .

origin of the mixing layer based on the mean A
concentration profile (in the calculation, x =

0). In this figure, the solid line is ?he -
computed mean concentration at x = 4 and the data
points are obtained from recent experimental -L'OO f. 1o

measurements by Masutani and Bowman [30] for a IIU.ag.
dilute non-reacting mixing layer with the same
velocity ratio. Figure 9 shows a comparison 4
between the computed and measured mean

fluctuations of the concentration, ,2. (C ) 2.m U*S.IO - L &i

It is evident from the two T..

figures that both the mean and the second moment
of the conserved scalar across the width of the -

shear layer are accurately predicted by our

computations.

Figure 7. Concentration field at Re 1 10000,
3&.,U0. Pe - 4000, U2/Ul = 0.5.

" " MASUTANI AND

*~CL -C . BOWMAN

D .

0A 0A

0.2 8
Figure 5. Vorticity field at Re = 10000, e

U2/Ul - 0.5. O-

-0.09 0 ;_1 0.15
x-Xo

Figure 8. Normalized mean concentration profile

as a function of the cross-stream
"* U coordinate.

- 2 MASUTANI AND
*U e IN BOWMAN

ITT 0.6-
=--,----,,OA

00- 0.

Figure 6. Scalar velocity field at Re 10000, Figure 9. Normalized rm concentration profile as

a function of the cross-stream

coordinate.
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We note cnat the results in Figs. 8 and 9 are 2 -&InNL*IM

in better agreement with experimental data than t2Unt..
those previously predicted by Givi et al. [31]. jitL' *

In these calculations, a k-E turbulence model and .P

a gradient diffusion model for turbulent transport
of the scalar mean, moment and probability density
function was utilized. In the k-c calculations,
the concentration fluctuations exhibit a fairly
smooth bell-shaped profile with a much less clear
double "hump" in the middle region, indicating TlE.1LU.

poor agreement near the high speed stream. The
present calculations show the two local maxima in .. ,., '
the fluctuation profiles that correspond to the
location where the gradient of the mean value is
highest. The same behavior Is observed by the
experimental results of Masutani and Bowman [30]
and Batt [321. It is clear that, in accordance 0-LI&a N
with the findings of Broadwell and Briedenthal 1,K. .1.
[333, the intermittency caused by the large W4 -

coherent structures contributes greatly to the •.
statistics of turbulent flows. hm
111.2 REACTING MIXING LAYER

In the calculation of a reacting mixing
layer, two reactants F and 0 are introduced on Figure 10. Scalar's velocity field at Re 10000,
both sides of the splitter plate. At x - 0, for y U2/U1 1/3.
> 0, cF = 1 and c 00, and for y < 0, c0  1 1 and

cF. 0, while cp = 0. As reactants are entrained

into the mixing cores of the layer, they diffuse
across the original interface and chemical is
reaction proceeds. The rollup and pairing
increases the original length of the interface by
many folds and allow the entrained fluid to
diffuse along a larger boundary (Ghonlem et al.

[343). During this process, if the Lagrangian
elements utilized to represent the interaction
between chemically reacting species are brought
close enough so that the distance between two w-6M M M

neighboring elements is smaller than the
characteristic diffusion length, they react at the
rate defined by Eq. (17).

In Figs. 10. 11 and 12, we present the
velocity, location and the strength of the
elements in terms of product concentration for the
reacting mixing layer with constant rate chemical
kinetics and temperature-dependent reaction rate, Figure 11. Product concentration field, Re - 10000,
respectively. The amount of the products formed Pe = 4000, U2/UI 1/3, isothermal
due to chemical reaction Is represented by the reacting layer.
diameter of the circles In the figures, i.e.
larger circles indicate more products. In both

cases, Re - 10000, Pe - 4000, and U2/U1 - 1/3
while Le-1. In the constant rate kinetics case,
the value of the Damkohler number Da - 1 and In I.111N
the temperature-dependent kinetics Da- 200, Ta - VI. , L.

10 and Q - 5. Note that in both cases the value
of the non-dimensional kinetic parameters are low ',-- ,:"' "
enough so that the effects of heat release on the
fluid dynamics can be negligible. The stiffness -
of Eq. (19) for large values of the Damkohler
number imposes a restriction on the time step of
integration. In these calculations, we found that -IU .
hat - 0.1 Is sufficiently small to accurately e , , . '-, '  '

Integrate the slow chemistry. _4, .~~ * ~ ~ A
A comparison between the two figures reveal ".¢

that under Isothermal conditions, the products are
formed as mixing occurs just downstream of the
splitter plate, while in the temperature-dependent
kinetics calculations, there is an ignition delay
before the reactant reach a temperature high Figure 12. Product concentration field, variable
enough to allow any significant chemical reaction
to occur. Once the reaction begins, the mechanism

7
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of product formation and chemical reaction in both 1
cases are asymptotically the same. Increasing the
Damkohler number to Da - 400 results In a shorter

ignition delay, and preheating the reactants by

increasing the temperature at the inlet to Ti - Mixing Layer
Q/2 while Da = 200, eliminates the Ignition delay 0.6

as indicated in Figs. 13 and 14, respectively.
In order to examine the effects of chemical 04

reaction on the transport of species, the

concentration statistics In the temperature-
Independent reaction case are presented in Figs. 02
15 and 16. These figures correspond to the
ensemble mean and fluctuation in the bottom-stream

species concentration in a reacting mixing layer . ...

with Da - 1, U2/U1 - 1/2, Re - 10000, and Pe - -0.09 0 0.15
4000. A comparison between figures 15 and 8, and X-X

between figures 16 and 9 indicates that near the
free stream, the chemistry affects the statistical Figure 15. Normalized mean concentration profile

behavior of the species. Near the reactioh zone, as a function of the cross-stream

however, the mean and the rms values of the coordinate.

concentration are lower under reacting conditions,
while the second hump near the high speed stream

side of the rms profile in the non-reacting layer

is eliminated in the reacting flow due to the
local consumption of the species by chemical

reaction. The same behavior was also observed in

the experiments of Masutani and Bowman [30) in a
reacting mixing layer under isothermal conditions.
Their results, however, can not be compared 0.6 Reacting
quantitatively with the present calculations since Mixing Layer
the values of the chemical parameters employed in

the numerical simulation are substantially lower 0A4
than those of the experiment.

Q2

TIM. " Mo. 0 o .5-"9 "0.15

* .,-*Figure 16. Normalized ras concentration profile
as a function of the cross-stream
coordinate.

Figure 13. Product concentration field, variable
temperature reacting layer.

111.3 EFFECT OF HARMONIC FORCING

W. &mL U The dynamic effect of oscillating the

TI - .. upstream side of the layer was studied

""" ": experimentally by several authors, e.g. Oster and

Wygnanski [35) and Roberts and Roshko [21) and
5numerically by Ohoniem and Ng [22). Their results

indicate that in the forced case, eddy

interactions follow four stages. In the first

* 2 1-010 stage, the layer rolls up at the harmonic of the

*" - forcing frequency closest to the most amplified

IL mode. In the second stage, a process of

accelerated pairings yields a large eddy which Is
in tune with the forcing frequency. This large

resonant eddy appears earlier than It would appear
" in the case of an unforced layer. In the third

-a* -1 stage, pairing among resonant eddies, which

*... represents a neutrally stable mode, is disabled

:' ',, 
'

.
:

. *
' ' ' '

j
- ' and the growth of the vorticity layer is impaired

' " " ,' for several eddies downstream. In the fourth

pseudo-random pairing Is resumed. Moreover,
velocity statistics is affected by forcing, and

the sign of momentum transfer across the layer is

Figure 14. Product concentration field, variable reversed following pairing. Entrainment of

temperature reacting layer. passive particles was found to be commensurate

with the development of the vorticity layer.
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In the recent experiment by Roberts and
Roshko (21), it has been observed that periodic

forcing has a direct influence on the outcome of
chemical reaction across a turbulent shear layer. 1.0
The results of this experiment indicate that when
harmenic forcing is applied, the mixing rate: (1)
is increased in the initial stages where the
resonant eddy is forming; (2) is decreased in the
intermediate stage which corresponds to the Q8
resonant or "frequency-locked" region; and. (3) is
the same as that of the unforced layer further Sp
downstream. In order to characterize these three
regions, the Wygnanski-Oster parameter Xw - u0

x/Um
2  

is utilized, where 9 is the forcing W.6
frequency [35]. Roberts and Roshko [21] and
Browand and Ho [36) show that the three different L 0.W 5
regions can be classified according to the local urtorced
value of X parameter. In region I, XW < I , the 0.4

growth rate Is enhanced. In region II, XW > 1, the

frequency-locked region, the growth rate is
inhibited. In region III, the growth rate relaxes
to that of the unforced layer. 0.2

In order to investigate this phenomenon
computationally, the response of the reacting
shear layer to the application of low frequency,
low amplitude perturbations on the upstream side

of the shear layer is computed. Streamwise

oscillations are applied on both sides of the 1 2 3 X 4 5
layer, hence a pressure perturbation is imposed
without changing the vorticity field. The Figure 17. Variation of the product thickness
streamwise velocities are taken as U1 - I + a sin versus the downstream distance.
(2w0t), and U2- a U2, where a is the amplitude of
forcing.

The normalized distribution of the product
thickness along the mixing layer for three cases,
0 - O, 0.5 and 1, is shown in Fig. 17. In these
calculations, a - 0.1, and Re - 4000. The figure
indicates that for 0 - 1, mixing is enhanced in
the initial part of the layer, 1 5 x 5 2. The III.4 EFFECT OF STRAIN RATE

resonant, frequency-locked region begins at x - 2 It has been shown experimentally by Tsuji
and ends at value x - 3. In this region, mixing [37, numerically by Liew et al. (38], and
is reduced and is less than that of unforced analytically by Peters (39), that the strain rate
mixing layer. Downstream of this region, x 9 3, has a major influence on the flame structure,
mixing rate resumes its natural growth and reaches particularly in non-premixed systems. In the
asymptotically that of the unforced layer. For counter-flow diffusion flame experiment of Tsuji
lower forcing frequency, 0 - 0.5, the same overall [37), it was observed that increasing the

* behavior is observed. In this case, however, the magnitude of stretch near the flame surface
results of numerical calculations indicate that results in an increase of the flow of reactants

, the resonant frequency-locked region is Into the reaction zone. As a result, the chemical
approximately in the range 3 S x s 4. A reaction Is not able to keep pace with the supply
comparison between the range of the frequency of reactants, and the reaction rate Is reduced
locked region calculated here with that estimated until local flame quenching occurs. The analysis
by Browand and Ho (36] Is shown on Table I. of Peters [39), which is based on the method of
Considering the fact that our simulations ignore matched asymptotic expansion at large activation
the effect of small scale three-dimensional energy, shows that the mechanism of flame
turbulence motion, and considering the non- extinction can be addressed by examining the local
universality of the Browand and Ho's curve due to value of the rate of scalar dissipation. This
Its independence to experimental conditions and parameter is viewed by Peters [39] as the inverse
other important non-dimensionalized parameters, of the diffusion time scale. If the local value
this agreement Is encouraging. of dissipation Is increased beyond a critical

limit, the heat conducted away from of the
TABLE I diffusion flame can not be balanced by the heat

produced by the chemical reaction. As a result,

J_ the maximum value of the temperature decreases,
frequency locked region and the reaction eventually ceases.

By increasing the number of scalar elements
a calculated measured (36) to 38 in each stream while decreasing the

computational domain to Xmax - 4, and by
6T 3 S x S 4 2.66 S x S 5.33 preheating the incoming reactants to TI - Q/2 to

_ _ _start the chemical reaction immediately downstream
1 2 S x S 3 1.33 5 x S 2.66 the splitter plate, we were able to observe this

_ _ phenomenon. Figures 18 and 19 show the

9
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Instantaneous velocity and temperature rise, T-Ti,
of the scalar elements at times of t - 19 and t - a-913W-91
21, respectively. In this case, the Damkohler 13., .. . ..0

number, the normalized enthalpy of reaction, the i _ ,.

activation energy and the velocity ratio at the
inlet are 50, 8, 20 and 1/3, respectively. The- _
cross stream direction is enlarged by a factor of

2 for the purpose of clarity. VIE
The figures show that the number of scalar

elements near the braid, which Is the thin link
between two neighboring cores, is only a small ..

portion of the total number of elements within the
computational domain, which reached more than M w . •ukWW
5100. This indicates an instantaneous quenching Tim .a......

at the stagnation points of the layer. Moreover,
the temperature and product concentration in the , .'v .'** *.
reaction zone reach a maximum at the core of the I . , ... ..;. -,, - " '..

eddies where the vorticity concentration is high, , ""

while they reach a minimum at the stagnation point I"
within the braid between the neighboring cores -' , ".:Ibq,._ -- e-

where the strain and the scalar gradients reach

their maximum values. This is consistent with the 4.

results of the pseudo-spectral calculations of
Oivi et al. [15], and with the experimental
observations of Tsuji [37] who showed that the
local extinction of diffusion flames occurs mainly Figure 19. Temperature field for reacting mixing

at the regions of high dissipation rate. At these layer.
regions, the temperature tends to decrease, and if

it goes below a critical characteristic value, the

flame locally extinguishes.
Quantitative analysis of the effects of

stretch on the chemical reaction is rather large gradients, or high dissipation, and hence a

difficult in the context of present algorithm, smaller total number of elements have to be

This is due to the fact that there are very few considered. The implementation of this method for

scalar elements near the regions of high strain, the numerical simulation of unpremixed reacting

and as shown by Ghoniem et al. [34], most of the flows is presently underway to study the effect of

elements tend to be concentrated near the regions strain rate more accurately.
with low dissipation. Implementation of a

numerical scheme based on the transport of the
scalar gradients, as in Ghoniem et al. [34] can IV CONCLUSIONS

improve the accuracy of the analysis
substantially, particularly those associated with In this work, a numerical scheme based on the
the effects of stretch. In this method, the transport of computational elements carrying

elements are concentrated near the regions of vorticity and scalar quantities has been developed

to simulate a reacting planar, two-stream mixing
layer with unmixed reactants. The scheme solves

S, U .U *the transport equations at high Reynolds and

f-a-- . I &- - . Peclet numbers without using models for turbulence
am closure. A Lagrangian stochastic model is used to

implement the chemical reactions for both constant
rate kinetics and variable temperature Arrhenius

reactions.
In the non-reacting flow simulations, the

calculated statistics of the mixing of a conserved
scalar are in good agreement with experimental

4q data. In particular, the numerical results show

- .- the presence or two maxima In the fluctuation
profile. In the constant rate reacting flow

. .** R simulation, the effect of chemistry is to smooth
out this curve and produce a single maximum, which

, i c,;..l,.,.( .: ..."..,. -. agrees with the experimental observations.
• . . .Harmonic forcing enhances the mixing within the

. - accelerated growth zone of the vorticity layer,

k4*i .' -- while It impairs the entrainment of the unmixed

-*,fluid into the cores in the resonating region. As
a result, the numerical simulation indicates a

.. . " ,' ~decrease in the rate of product formation in the
" frequency-locked region, Similar to previous

experimental findings.
Figure 18. Temperature field for reacting mixing In the Arrhenius. temperature- dependent
ikinetics, the mechanism of ignition delay and the

layer. effects of reactants preheating on the decrease of

the duration of this delay is observed. Also, the

10



non-equilibrium coupling between the scalar 9. Ohonlem, A.F., "Computational Methods in
dissipation rate and the flame structure is Turbulent Reacting Flows", Lectures in
revealed as quenching frequently appears within Applied Mathematics, Vol. 24, 1986, 199-265.
the braids. To describe this phenomenon more
accurately, work is underway to construct a higher 10. Oran, E.S. and Boris, J.P., Numerical
order scheme which can provide better resolution Simulation of Reactive Flows, to be published
at the regions of strong strain rates, by Elsevier Science Publishing Co., 1987.
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Appendix IV

The paper on "Three dimensional vortex simulation with application to
an axisynmetric shear layer" describes the three dimensional vortex element
method and its application to the evolution of the azimuthal instability ona vortex ring and the initial stages of development of a turbulent jet.

I.
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THREE DIMENSIONAL VORTEX SIMULATION WITH APPLICATION

TO AXISYMPMTRIC SHEAR LAYERS
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and
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ABSTRACT In highly three-dimensional flows, several
forms of instability may arise simultaneously.

A three dimensional vortex element method is The evolution of spanwise waves on the large scale
developed for the numerical simulation of eddies and the development of azimuthal
incompressible flow at high Reynolds number. The instability along the axis of vortex rings have

- method utilizes vortex vector elements with finite been observed experimentally as evidence of

point-symmetric cores to discretize the vorticity multiple forms of instability. In this case, the
field. The transport of these elements is done in distortion of the vorticity field occurs faster
Lagrangian coordinate by computing the velocity and the non-linearity is compounded by the

* field as a summation over the individual interaction between different Instability modes.
contributions of the elements. Moreover, the problem is governed by several

The method is used to compute the self- length and time scales, and multiple states can be
induced velocity of a vortex ring and the expected depending on which mode grows faster (for
stability of a vortex ring with finite core. photographic record of the development of
Results show that vortex rings become unstable to vorticity fields, see Van Dyke [1) and Lugt [2)).
a particular azimuthal perturbation that depends It has been reported experimentally, and
on the core/radius ratio. The mode frequency and observed in numerical studies, that these changes
shape of the unstable state are in excellent in the vorticity field may not incur strong

agreement with analytical and experimental variations In the mean flow field. This is
results. The method is applied to study the expected since the velocity Is an Integral mean of
rollup of an axisymmetric shear layer and the the vorticity field. However, they affect the
generation of large scale vortex ring structures. fluctuations strongly and to the level where the

order of magnitude of the fluctuation may change.
This is extremely important in mixing and heat

I. INTRODUCTION release in chemically reacting flows since the
rate of mixing, and thus chemical reaction, is a

At high Reynolds numbers, vorticity occupies strong function of the fluctuation and depends
a small subset of the volume of the flow field, weakly on the mean field. It has been confirmed
This is exemplified by boundary layers, shear that by changing the vorticity field of a shear

4 layers, wakes, jets, separation and recirculation layer through imposing certain perturbations on
zones, etc. These vorticity distributions are the flow, the rate of chemical reaction can be
unstable to natural perturbations. At small enhanced or slowed and that turbulent shear
amplitudes, perturbations grow exponentially in stresses can reverse sign during the sme process
time, however, they have a limited effect on the (for a review and some recent results, see Ho and
flow. The growth of these perturbations into the Huerre [3), Robert and Roshko [4] and Ohoniem and
non-linear stages is, however, accompanied with Ng [5)).
severe distortions of the shape of the vorticity To capture these changes, numerical
field and strong changes in the local simulation of the unaveraged non-linear equations
concentration of vorticity. Examples for these of motion has been utilized. For the success of
changes is the formation of large scale structures these simulations, care must be exercised In
In shear layers and recirculation zones, resolving small variations since they ultimately

grow to produce the finite amplitude changes, and
*hence numerical diffusion should be minimized.

CopyrightD 1987 by A.F. Ohoniem. Published by Moreover, schemes must adapt to the strong
the American Institute of Aeronatics and distortion In the flow field without developing
Astronautics, Inc., with permission, numerical instabilities. Thus, Lagranglan schemes
. Associate Professor, Associate Fellow AIAA. seem like natural candidates. A grid-free class
Of Research Assistant of Lagranglan schemes, vortex methods, is utilized
*#*Assistant Professor, Member AIAA. in this work to study the evolution of three
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dimensional flow fields dominated by high and stability of a vortex ring and a vortex torus.

c The scheme is constructed as follows: The
onumbersa vorticity field is first discretized into a finite

In vortex simulation, vorticity distribution number of small straight line vortex vector

is represented by a finite number of localized elements and then followed in a Lagrangian frame

vortex elements, or vortex disks in two dimensions of reference. Each element has a finite core of

(blobs according to Chorin [61), and vortex balls vorticity which is point-symmetrical around Its

4' in three dimensions (vortons according to Saffman center, and hence the nomenclature "vortex ball".

and Merion [7, or vortex arrows according to The velocity produced by a distribution of vortex

Leonard [B] which move in an inviscid field with vector elements, or vortex balls. is obtained by

the local particle velocity. A particular flow the desingularized Biot-Savart law, which amounts

configuration can be fully described when the to summing the velocity produced by individual

appropriate boundary conditions are imposed on the vector elements. The procedure for a consistent

velocity field by adding an extra Irrotatlonal discretization and the evaluation of the Biot-

field. Two-dimensional vortex simulations have Savart law is explained in Section 11.2. Its

been useful in providing an accurate description numerical accuracy and convergence under steady

of the large-scale structure of turbulence in state conditions is shown in Section 11.3. The

shear flows (Ashurst 9], Choniem and Sethian [10] comparison between the numerical and analytical

and Ohoniem and Ng C5]). However, they cannot be results for the stability a thin vortex ring and a

used to describe phenomena in which streamwise vortex torus, another test for the accuracy of the

vorticity, or variation along vortex lines, plays method under unsteady state, is discussed in

an Important role. Moreover, they lack the Sections II.4 and 11.5.

ability to capture small-scale turbulence The potential velocity field added to satisfy

structures which arise due to vortex stretching a particular set of conditions on the boundaries

and tilting with respect to the main flow plane. is determined by solving the Laplace equation

In this work, a three dimensional vortex numerically subject to the appropriate boundary

element method is developed for the numerical conditions. When the boundary conditions match

simulation of flow field with high concentration those of a standard potential solver, i.e.

- of vorticity at high Reynolds number. The scheme Dirichlet or Neumann conditions, that particular

utilizes vortex vector elements with finite point- routine can be used to evaluate the potential
symmetric cores to discretize the vorticity field velocity. In cases when the boundary conditions
and follows their motion in Lagrangian are neither Dirichlet nor Neumann type, one faces

coordinates. The vortex vector elements change difficulty in satisfying continuity along the

their vorticity according to the local stretch, boundaries, and a special algorithm must be

while their direction is determined by the tilting constructed to handle this difficulty. This is

of the vortex lines. The rotational velocity discussed in Section III.

field is computed by summing over the field of
each individual element, which is evaluated froy II.1. EQUATIONS OF MOTION

tne desingularized Biot-Savart law. The potential The motion of an incompressible inviscid flow

velocity added to satisfy the boundary conditions Is governed by the Euler equations:
is computed by using the appropriate image system

of the vortices. For recent reviews of vortex U - 0

calculations in three dimensions, see Leonard
[8,113 and Saffman and Baker [12]. 3 u - Vu VP (2)

To check the accuracy of the vortex method,
we use test problems and make comparison with expressing the conservation Of Mass and momentum,
experimental and analytical results. The respectively. In these equations, u a (u,v,w) is
discretization algorithm is applied to compute the re vely. In tsequations, u * (u.v/w) Isthe velocity, t is time, V o ( /ax, /Sy,3/az) is
self-induced velocity of a vortex ring and the the gradient operator, while z - (xyz), and p is
results are compared with the Saffman's analytic pressure. Quantities are normalized with respect
solution [13). The stability results of a vortex to the appropriate combination of a characteristic
ring with a finite non-deformable core and a length scale, velocity scale and density. In

* vortex torus with a deformable core are compared vortex simulation, the equations are recast in
with the analytical solutions of Widnall and terms of the vorticity a:
Sullivan [143 and Widnall et al. t151.
Preliminary results for the rollup of a three a - V x U (3)
dimensional shear layer subject to an axi-

symmetric perturbation are compared with the The vortex transport equations are obtained
experimental results of Vandsburger et al. [16] by taking the curl of Eq. (2). Using Eq. (1) and
and Roquemore et al. [17). using the fact that I.* - V.Vxu - 0, i.e. the

vorticity forms a solenoidal vector field, we Set:

I. FORMULATION AND NUMERICAL SCHEME )w(
8- u •e - a. b ( )

In this section, the construction of a three-

dimensional scheme for tracking the evolution of a If the vorticity field Is known, the velocity can
vorticity structure in an arbitrary domain is be evaluated by Integrating Eqs. (1) and (3), as
described. The accuracy of the scheme is checked shown below, while Eq. (4) Is used to transport
against theoretical results regarding the motion 2 the vorticity in the form of a number of discrete
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elements. This is. in essence, the backbone of Furthermore, the vorticity vector can be

vortex simulation algorithms. written as w = w I, where I is the direction Of

Based on the Helmholtz decomposition of a the local vortex line, or material lines, uhile dx

vector field, the velocity can be split into a - dA.dL where A is the cross sectional area normal

solenoidal and an irrotational component, to the direction 9. The circulation of a vortex

line, r, which is conserved along a particle path

u - V *U (5) according to Kelvin theorem, Is expressed In terms
w p of the vorticity a as r - Af m.dA.

where u is the velocity induced by the vorticity Since u is an irrotational component, then

field in an unbounded space, and up is the -
p u Vs.where # is a velocity potential governed

potential component added to satisfy the potential P

no-flow condition along the boundary of the by:

domain. Each component will be evaluated 2
separately, satisfying the appropriate boundary V # - 0

conditions, and then added to obtain the total

velocity, while the total velocity, U. Is subject to a

To evaluate the velocity field induced by a potential boundary condition at the boundaries of

given vorticity distribution a In an unbounded the domain, i.e.(u 0 V$).m is given on 3D, where n

space, we assume the existence of a vector stream is the local normal to D. which denotes the

function 9 such that boundary of the domain.

,--u -9 x (6)
w 11.2. EVALUATION OF THE ROTATIONAL FIELD

Bu satisfies the continuity Analytical evaluation of the Biot-Savart

: By construction, u integral in Eq. (9) is restricted to simple

equation since V.Vx$ = 0 identically. vorticity distributions, such as rectlinear

Substituting in Eq. (3) and assuming that W.# * 0, vortices and circular vortex rings of concentrated

one obtains: vorticity. Therefore, the Integration must be

performed numerically for an arbitrary vorticity

O (7) distribution. For that purpose, the continuous

vorticity field is discretized Into a number of

The solution of this PoLsson equation In three vortex vector elements, each with an assigned

dimensions is given by: vorticity u " The magnitude of the vorticity

*(x) * .' G(x - x') u(x') dx' (8) associated with each element is distributed over a
small spherical volume around its center according

where 0(x) - 1/(4wr) is the Green function, and r to a core function f with a characteristic core

- 1i. As shown by Batchelor [183, the above radius 6. The vorticity field is hence expressed

expression for 9 is solenoidal, as previously as:

assumed, if the boundaries of the domain extend to

infinity. This is essentially the condition needed N

to evaljate u .W(x0) - I (0) f6(1 1 ) (12)
1i=1

The solenoidal velocity component, u wcan be

evaluated by substitution In Eq. (6) which yields where N is the total number of vortex vector

the well-Known Biot-Savart law: elements, and 1K is the center of the vortex

element, while h is the initial distance between
u * Kxx') x ux') dx' (g) the centers of neighboring elements. The accuracy

of this discretization is discussed In Beale and

K(x) (10) Majda [19,20). Note that If f6. 6(z-X ), where

r3 V.) Is the Dirac delta function, Eq. (12)

represents a distribution of singular vortex

where a' is the position of the volume element lines, or vortons [7]. However, in this

dx'. representation, vortex balls, while equivalent to

The implications of the equations of motion, vortex disks in two dimensions. are used and f6=

Eqs. (3) and (U), regarding the evolution of the w

vorticity field can be summarized in the following 16 f(r/6), while 6 13 finite. The distribution

important dynamical statements, given here without of the magnitude of the vorticity aasociated with

proof while used later in the construction of the each element is point symmetrical around its

numerical algorithm (for details. see Batchelor center 1,, while its direction everywhere is I=

[18)): aI/wi, and w - Jul. 6 Is the core radius of the

(1) Kelvin theorem: The circulation around a element where most of Its vorticity Is

closed material loop, defined as r - A f.dA where concentrated. f > 0 for r < 6, and f vanishes

A is the surface area within the loop, is rapidly for r > 6.

conserved as the loop is deformed; A simple intuitively appealing choice for a

(2) Helmholtz theorem: Vortex lines, core function could be the Hill spherical vortex

parallel everywhere to the local vorticity vector, for which w - A * for p ( 6 and w - 0 for p > 6,
move as material lines.3
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where P 2 2 y
2  

o being the radial direction Thus, using a first-order time integration;

in a cylindrical coordinate system. This.

however, is a poor choice for the core function l(t.At) W ) u at (17)

since the latter should have a maximum at the

center and decay further away. Moreover, w is not and

a function of r. A better choice may be the three at i(tat) t (t) a&t t) u I at (18)

dimensional analogue of the Rankine vortex, i.e. w

*. w0 for r S 6 and w - 0 for r a 6. The velocity gradient can be evaluated

For accurate discretization of the continuous analytically by differentiating Eq. (I4), as

vorticity distribution, 6 should be chosen larger proposed by Anderson and Greengard [22). However,

than h, where h is the initial separation between since the vorticity moves along particle paths,

the elements and h
3 

is the volume element used to the material line coinciding with the vortex

construct the vortex balls. This will ensure that vector Ati can be approximated by Its terminal

the core functions f associated with neighboring points l. 1, 
° 
at /2 and X

2
i- 

1
, - ALt/2, and

elements are highly overlapping. The introduction I I I

of a similar discretization procedure has been the center of the vortex vector element Is

widely used in two dimensional simulations to approximated by x - (1
1 

+ 2)/2. In this scheme,

construct stable and accurate vortex algorithms 
a vortex vector element Is described by (r. 11.

[5,6.8.9,19). Moreover. h may take on different 12) and both terminal points are updated each time

values in the three principle directions. and h
3  step. A similar construction was used by Chorin

[23,24,25] to study boundary layer stability, the

is replaced iy 0, where aV - h n h . in this evolution of a turbulent vortex and the properties

x y z of developed turbulence. Since the vorticity

case, the vorticity associated with an element is field is solenoidal, the end of an element is the

W, * 1/ V$ w dx, the integration is performed beginning of the next element if these elements

were neighboring elements on the same vortex line

over AV. at t - 0. Thus, this scheme can be used to ensure

From Helmholtz theorem, the vorticity the satisfaction of the condition V.. - 0 by

associated with a material element atI changes as maintaining the connectivity of vortex tubes no

O it stretches, m t) - . (O)/AL (0)1 At (t), while matter how accurate is the discretization of the

I I i I vorticity field. The same property Is utilized In

Ax - IAII. Moreover, according to Kelvin theorem, the filament schome of Leonard [26) Cso* also

the circulation of the vortex vector element Ashurst and Melburg [27)). A discussion of the

remains constant as It moves along particle paths, relationship between different algorithms is given

while due to incompreasbility. AV is constant. by Greengard [28). In our computations, a second-

Thus, Eq. (11) can be written as: order time integration algorithm is used to move

the terminal points, (11.12). of the vortex vector

N elements, e.g., for X:

arx,t) r a Ti At1 t) f (-xi (13) II - 111 (t) 4 U1 at

In this expression, at, is the material vector

associated with the vorthx vector element, and and (19)

is the midpoint of this vector, xi(Xi.
0
) - X .  t * x11(t) * Cu * u)/2 at

The velocity field is obtained by I I

substituting Eq. (9) into Eq. (10) and

integrating;: where u0 - u(x).
The accuracy of the vorticity discretization

1 N (x-x) x bt - depends on: the choice of the core function f, the

U (() (14) distance between the centers of neighboring
w r

3  
6 elements h, and the ratio between the initial

separation between the vorticities and the core

2 radius, 6/h. In the analysis of Deals and Majda
where x(r) -w I f(r') r' dr', and r, - I - [29), It Is shown that a second order scheme is

while is the center of the vortex vector obtained if the following third order Gaussian

core function is used:
at 1 . In this representation, each vortex vector

element is described by (r, X, at) C Since X and fir) * -r
3  (20)

A& are the position and length of a material

particle and a material line, respectively, their

* variation with time can be obtained from and;

(Truesdell [21)):
-(r) e-' (21)

, ~~~dt ulXt))
d[ iXttAs the flow develops strong stretch along the

dat vortex lines, the effective value of At exceeds h

at V Vu (16) and the amount of vorticity transported by each

14%
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vortex ball grows. To maintain a uniform

resolution, if aL 1 > 2h, a vortex element is split

Into two elements, each with at - t 1/2 and r 4

r . Effectively, this amounts to redistributingo 
eO 6 6 6oO 4 9°° o . .. "

the vorticity field among a larger number of
elements to maintain the accuracy of the -* -- - --

calculations. The value of 6 is kept constant in o 
-

our calculations. 2 a

11.3. SELF-INDUCED VELOCITY OF A RING 6

To investigate the effect of discretization
of the vorticity field on the accuracy of the
calculation of the velocity field, the self-
induced velocity of a vortex ring with a radius R
and a finite core radius 0 Is computed and
compared with the analytical results for a thin 0 20 46 Be B e 12 i40
vortex ring. For this purpose, the ring Is
discretized along Its axis Into a number N of N

vortex vector elements, where the length of each
element is h - WO) - 2wR/N. Each element Is Figure 1. The normalized self-induced velocity of

represented by a computational vortex ball with a vortex ring v - v/(r/4vR) vs. the number of

core radius 6 - a. This is a worst-case analysis, computational vortex balls used to discretize the
since normally one would use several elements to ring, N. The analytical results of Saffman Is
represent the core, and choose 6 < a (as will be represented by the straight line. o/R-O.1 - 0
shown later). However, we start with this case a/R-0.2 a ; o/R-0.3 * v.
for simplicity and computational convenience.

To distinguish between the two
representations of a vortex ring; where the vortex core function of the vortex elements is a third

balls are aligned along the ring axis forming a order Gaussian, Eq. (18), and not a second order
tube of vorticity, is called the thin tube Gaussian as in Saffmans calculations, a slight
approximation while if several vortex balls are discrepancy In the self-induced velocity is

used within the cross section of the ring, it is expected (a comparison between the two
called a vortex torus. The first approximation is distributions Is presented In Fig. 2); (2) since 6
different from the thin filament approximation of > h, and a strong overlap between the cores of
Leonard [26]. In the thin filament approximation, neighboring elements is ensured, the vorticIty at

the Blot-Savart law is modified to remove the any point is the contribution of many elements
singularity at the center of the filament and the
core maintains its vorticity distribution as the

filament Is deformed. In the thin tube 1.9
approximation, neighboring elements can move
freely with respect to each other, and hence .2nd order Gaussian

changing the local vorticIty distribution of the Vortex Ring
tube. 6.7

In the discretization of the vortex ring
using the thin tube approximation. 6 - B h, where 1

B > I to insure the overlapping between 65

neighboring elements. Eq. (14) Is used to
evaluate the self-induced velocity V by summing . .4
the contribution of the elements around the ring,
excluding the effect of the element on itself. 6.3

Results are compared with the analytical 62

expression of Saffman [13) for a thin vortex ring,

GIR << 1: .

r 8P6.9L - n L- - C) (22) I 2 + e$i
6l- 2 0 2 i

where C - 0.558 for a second order Gaussian Rh]ie
distribution of vorticity within the core and a Is
the effective radius, i.e. It is the standard Figure 2. A comparison between the Vot
deviation in the Gaussian.

A comparison between our computations of the distribution within the core of the thin ring used

elf-induced velocity and Eq. (22) is shown In in the computations of Fig. 1. i.e. a third order
, Gaussian described by Eq. (18), and that of

Fig. 1 for different values of N, V - vW(r/40R). Saffman ring. i.e. a second order Gaussian. In
Three comments should be made here: (1) since the both cases, sOR - 0.25.
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along the ring axis (the vorticity of a single thus the size of the perturbation varies in the

element and the total ring vorticity at any point azimuthal direction as AD - c sin (2wne).

Is presented in Fig. 3, showing that while the Originally, the ring lies In the x-y plane, and
the streamwise Is the z-direction whiile 9 - P for

all vortex balls. We start with n - 1 and

6.9 Increase by an Increment of one. The time step

used is at - 0.10. Similar results were obtained
.8Vortex Ball - for o/N - 0.1. 0.15, 0.2, 0.25. In the following,

Vortex Ring only the first case Is discussed In detail.

For n < nn , where nn is the wavonumber of a

i.e neutrally stable Mode that neither rotates around

5the ring axis nor grows, the waves rotate, or
0.5 spin, around the ring axis at a frequency 0 that

6.4 depends on n. As it rotates around the

unperturbed axis of the ring, the Instantaneous
3.3 center of the ring draws an ellipse whose major

1.2 axis Is In the radial direction, p, and the minor
axis is In the streamwise direction z. Thus,

13.1 these are bending waves that move around the ring
axis, hence the name helical waves (if the ring is

0.0 , opened to form a rectilinear vortex, the waves

* 2 4 a ii will like a corkscrew spinning at frequency ).

The sense of rotations of the waves Is the Same as

RIAUS that of ring vorticity. The frequency of rotation
0 starts out low at small n, grows to a maximum

Figure 3. The vorticity distribution of a single and then decreases again. The amplitude In the

vortex ball and the vorticity distribution of a radial p-direction and streamwise z-direction are

vortex ring, both normalized with respect to their shown In Fig. 4 for n - 2, 4. 6. 8. 10 and 12 for

maxima a - 6 - 0.25 R.

magnitude is strongly affected be neighboring 1.3

elements, the core size Is the same); and, (3) the

analytical expression applies for a <( R, and

hence best comparison is expected for a/R - 0.1.

while It deteriorates for thicker rings.

As the ring becomes thinner, i.e. larger R/a,
more elements are required to achieve an accurate

discretization. This is expected, since by 8,0

choosing 6 - a and 6 - Sh. where 8 is a factor I 2 4 6 9 10
larger than one, the number of elements N i
2vR/(Bh) - O(R/e), which Increases as a decreases.
Therefore, for a fixed core size a. the number of AD

elements requled to compute the self-induced |.0 Az
velocity due to curvature R grows as R Increases.

II.4. STABILITY OF A THIN VORTEX RING
A more interesting problem, providing a test 1.5

for the accuracy of the time-dependent

computations, is the growth of small perturbations
on the vortex ring. There is a rigorous
asymptotic linear theory for the stability of 6.3
vortex rings In two forms: (1) for a ring with a I 2 to

non-deformable core, performed by Widnall and

Sullivan [14l) ; and (2) a more elaborate theory AD
for a ring with a deformable core reported In - .6
Widnall et a. 115]), Widnall [30] and Widnall and
TaSi C31). We will compare the results of the
thin tube approximtion to the first Case, and

results for the vortex torus to the second case. 1.5
To Study the linear stability of thin vortex

rings in the thin tube approximation, I.e. with

almost non-deformable cores, a radial perturbation

of amplitude c/N -- 0.02 and a wavenumber n is 6.1
Imposed on the axis of the ring. The wavenumber O 2 4 t o II
Is defined here as the number of waves that is
fitted along the entire length of the ring axis, TIM (N- 8)
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Figure 5. The amplitude of the perturbation in the
radial and streamwise directions for the neutrally

stable mode for the same ring as in Fig. 4.

* 2 4 0 6 16
produced. Moreover, no wave rotation 1o observed.
The wave amplitudes are shown In Fig. 6 for or .

*0.1.

6.5

2.5

6 2 4 is8 2.6

-adial o-direction and the 3treamwise 2-direction
for a vortex ring with C/R - 0.1, computed using 0.5
the thin tube approximation, the wavenumber of
the perturbation is n - 2. 4, 6. 8, 10 and 12,
arranged from the top figure. Both amplitudes are 6 2 4 a 6 I
normalized with respect to the Initial
perturbation In the radial direction, t/R 0.02, TIPE NU- 14)
and time is normalized with respect to R2/r., In Figure 6. The amplitude of the perturbation in the
this figure, the behavior of the modes n < n Is radial and streamwise directions for the unstable* shown. mode n# of the ring of Fig. 4.

aIR - 0.1. Note that the radial perturbation As n > n', the ring Is stabilized again and
produces a streauwise perturbation of almost the the eigenfunctIons behave in a similar way to n (
same magnitude. All these modes are characterized n . However, the major axis of the ellipse Is now
as being linearly stable since their amplitudes n
remain bounded. in the streamwise direction and the frequency of

At n - nn, the waves neither grow nor rotate, rotation Increases Indefinitely. Moreover, the
n. sense of rotation Is In the Opposite to that ofFor a/R - 0.1, at nn - 13 the ring remains in its the ring vorticity. The wave amplitudes in the p

original plane without bending, as depicted by and z directions are shown In Fig. 7 for n a 15,
Fig. 5. The next mode, n* - I, the waves grow in 17 and 19.
the radial direction, and then in the streaswise Similar observations are made for o/P - 0.15.
direction so that the total amplitude grows 0.2 and 0.25. In all oases, the unstable mode n#
exponentially in time, i.e. the ring becomes is a bifurcation in the eigenfunction that
linearly unstable and streamwise vorticity is corresponds to 0 0. In Fig. 8, the results of
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Figure 8. The computed results for the dispersion
relation of a ring using the thin tube
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approximation. 
/R.0.1 * v ; u/R.0.15

U.S */R-0.2 * o ; a/R-.25 *0. The frequency of
9 2 4 5 s ii rotation of the made a Is normalized with respect

0 ] to R
2
/r while k is normalized with respect to R/o.
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TIME (M.J 19)

Figure The ampitude of the perturbation In the
radial and 3treamwize directions for the modes n > -6.5
no or' the ring described In Figure 4. The
wavenf mber of the perturbation is n o 15, 17, and
' 9 , a r r a n g e d f r o m t h e t o p . 1 2 4 a S t o 1 2 1 4 1 6

TIPE
these computations are suwnarized in terms of 0,
the rotation frequency of the waves. v.s. the wave Figure 9. The growth of the unstable mode n 7
number k - no/R. In this figure, 0 Is normalized for o/P - 0.-. computed using W - 30-140, with

with respect to r/I2 . In all cases, the unstable increents S -0.
mode k6 - n e/R - 1.25 corresponds to a non-
rotating mode. 0 - 0. This Is In agreement with 0.2 and n - no 7. N - 30 11 the smallest number
the theoretical results of Widnall and Sullivan necessary to satisfy the condition 6 1 h, however,
(143. They observed, similar to what we see in we notice that N a 90 i n"eary to CO rute the
the nume-cal results, that a mode becomes logirith lc growth rate accurately. It is the
unstable when the self-induced rotation of the ean* number required to Comput 3
waves balances the rotation induced by the rest of accue as*sen 3. this n.109

Accurately. 
as sen In Fig. 2. This to not

the ring and the energy of the perturbation is surprising since the Stability of the local waves
utilized In stretching the wave amplitude. depends strongly on the velocity (Or Strain field)

In order to check on the accuracy of the induced by the ring on te perturbation. the
computations, we varied the discretization linear growth rate, a- m (liA)/at 0.1625. Te
parameter h by using more elements around the axis ) 0
of the ring, h - 20R/9. Figure 9 Shows the growth analytical value obtained by WIdn ll and Sullivan
of the amplitude of the perturbation with time 114) for the same value of ; is 'x . 0.157.
using an increasing number of elements for R
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Figure 10. The computed wavenumber of the most
unstable mode vs. the normalized self-induced Figure 11. A comparison between the vorticity

distribution within the vortex ring before
velocity V. compared with the results of the deformation and after deformation of amplitude c/R
linear asymptotic theory for a non-deformable core * 0.1 and nw - 6 for o/R - 0.25, computed at point
approximation o, the results of the theory for a
deformable core for a uniform vorticity of zero deformation.
distribution o, and for a quadratic distribution

and the experimental results of Widnall et al.
* -11.5. STABILITY OF A VORTEX TORUS

To make the distinction between the two
models of the vortex ring clear, this ring is

In Figure 10, we plot the critical wave called a vortex torus. In this representation.
number n* against the self-induced velocity V, the core of the vortex torus is discretized into
used to characterize the ring, for t!,e four cases. more than one vortex ball so that 6 < a. Thus,
On the same pl-ne we reproduce the results of the vortex torus is formed of a number of vortex
Widnall et al. [151 and Widnall and Tsai [31) for rings whose cores are smaller than the core of the
the non-deformable core model, the deformable core torus. The Initial vortlcty m1(O) associated
model and their experimental results. The with each vortex ball Is Computed from Eq. (12) by
comparison Is interesting and proves our early solving the corresponding system of linear
speculation that the numerical thin tube model equations. subject to the condition that the total
allows sall core deformation since the circulation s the cdme. Since the totus Is
computational results are closer to the uniform In the azimuthal direction, It sufflees to
experimental data than those of the analytical solve a number of equations equal to the number of
solution of the non-deformable core model. balls used across one crosa-section of the ring.
However, it does not allow enough changes within In the results presented here, nine balls
the coe to capture higher order radial variations were used across each section of the ring, one at
within the core Whucn support the short wave the center and eight distributed along the
instability that is observed experimentally, circumference of a circle with radius p . 0.?4,

So far, it can be concluded that although the arranged at 45*. This choice for the Initial
results of the thin tube approximation are in location of the centers of the vortex balls Is
agreement with the analytical theory of a vortex used to minimize the difference between the totalring with a non-deformable core, the model is not circulation of the vortex torus and the sum of the
capable of describing the stability circulation of the vortex balls. The core radius
characteristics of a vortex ring with deformable of each ball was taken as 6 = 0.8 . and the
finite core, as Observed experimentally. Using distance between the centers of neighboring
vortex balls allows, however, small first order elements is h - /1.1. Therefore, the number of
deformations in the vorticity core of the ring, as elements used along the circumference of the torus

oown in Fig. o. sch move the predlctons of motionothse lsh o the cere o ectonthe unstable modes closer vo the experimental depends on Its radius. Figure 12 show the actualvortlcty distribution and the numerical vortlctyValues than the analytical theory of non- distribution produced by the vortex balls. The
d e f o r ma bl e c o r e b it n o t 8 3 C lo s e a s th e r e s u l t s o f m t o f t e e b l s t r u h u h r s e t o
the more elaborate theory of deformable cores, of the torus allows a Substantial deformation of
Thus we must proceed to a more detailed Its core at different aection. Thus, highe-
description of the vorticity core of the ring order radial modes associated with the Instability
using several vortex balls to discretize the of vortex rings, which has been observed
vortiity within the core, as we will show next. experimentally and analytically, can be captured.

9
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Figure 12. The actual and discretized vorticity )© _I

distribution of a vortex torus using nine vortex
balls within the core.

Computations were performed for four tori , .
with a/R - 0.15. 0.20, 0.25, and 0.35. In all 4 2 4 a 8 to 12 6 2 4 0 S Is 12
cases, the vorticity distribution Is the same XZ

third-order Gaussian utilized before. The initial
amplitude of the perturbation OR - 0.02, and a
number n of sinewaves were fitted along the torus 2!
to model the Initial perturbation. The time step
of integ-ation at - 0.1. and the computations were
performed for 1000, or 2000 time steps to observe
the growth of the perturbation. The overall •
behavior of the vortex torus was the same in all > m *

cases. As an example, results for a/R - 0.2 are
discussed next in detail.

Figure 13 shows two views of the torus after
1000 time steps, when perturbed with n - 8, 9, 10,

ar.- 11. In the fl-sit three cases, the core 0 , ,, , _
deforms, as seen by the redistribution of the * t1 12 * I 12
individual rings within the torus, and the waves x Z
spin around the unpe-turbed axis of the ring.
However, the perturbation stays bounded. In the
last case, the perturbation grows In both the
radial and the streamwise directions causing

* substantial non-uniform deformation around the 3
ring axis, and the generation of streamwise
vorticity. The amount of deformation in each case a
is seen from the total number of elements used at

the last time step. In the first three cases, the
number of elements remains constant at W - 1080 .
for 1000 steps. In the unstable case, the number
of eleents grows to 126. Since from Helmholtz 0.

theorem, w(t)/w(O) - al(t)/'i(O), where at IIs the

summation over At1 for all the vortex elements, t a 0 a 6 t 4 S S I to I

this stretch Is accompanied by intensification of X Z

the vorticity within the ring at the same ratio of
stretch.

Figure 14 Shows two views for the torus in Figure 13. The form of the vortex torus, */ .
the unstable case every 200 computational time 0.2. after 1000 computational time Steps with at -
steps. starting at t - 0. It is clear that. at 0.1, starting with a perturbation of c/ft . 0.02.
the unstable mode, waves do not rotate around the The wavenumber of the peturbation to n . 6, 9,
&s.1 of the ring while their amplitudes grow, I10, and 11, starting from the top plot.

Iil



Figure 14J. The growth Of the perturbation on a
* * vortex torus with OIR * 0.2. e/R - 0.02 and n -

- 11. The torus is discretized Into 9 rings with
* *120 vortex balls along each ring. Results are

shown every 200 time steps starting with t - 0.
The Plots show that this Is an unstable mode In
which the amplitude of the waves grow without

* 2 4 5 S if 12 6 2 4 6 3 10 12
X z U

CN Cd

X z

Ka 9 t 12 9 a 4 5 a is 12

Z. 4 02 1 1 1 *a 46610124 6 1 1
Un

2 4 6 to 12 0 2 12 I 1

X N

if01 1226 111
x z

*~~~ 2 6 2024 I1

I' Fiue1. The same vortex ring as in Fit. 14 but

d I. wth n - 9. The plots Indicate that this is a
I________ stable Moewtotgotwietewvsrotate

* 2 4 S 9 to 12 6 a 6 6 6o 12 around the unperturbed center of the ring. The
Xz ring Is plotted every 300 steps starting at It - 0.



similar to the results of the thin tube respectively. The exponential growth of small

approximation and to the results of Widnall and perturbations at the early Stages is seen at n -

Tsai [31]. Moreover, the core vorticity is 11 and 6 for the two cases, respectively. Figure

redistributed into a number of sectors equal to 18 summarizes the results for the four tori, /R 

the number of waves. The outer portion of each 0.15, 0.2, 0.25 and 0.35, showing a very good

sector stretches forward in the streamwise agreement with the experimental results of

direction while the inner part elongates Widnall and Sullivan [14). AS before, the value

• backwards. On the other hand, results for n - 9, of V is used to characterize the ring in order to
. which Is a stable mode, depicted every 300 steps remove any confusion about the definition of the

in Fig. 15, show the rotations of the waves as core and the vorticity distribution. The
peaks and valleys exchange their locations while analytical results for a vortex torus with a non-

the core vorticity remains uniform In the uniform vortIcLty distribution within the core.
azimuthal direction, the numerical results. and the experimental data

The average amplitude of the perturbation are In close agreement, differences can be

around the circumference of a torus with a/R - primarily attributed to the vorticity distribution
0.15 and 0.35 is shown in Figs. 16 and 17, within the core.

The form of the unstable torus with o/R -

0.35 at n - 6, is shown at time steps 1400-2000,

9.0 every 200 steps in Fig. 19 (it was found that n -

7 is also an unstable mode for this torus). It is

interesting to note that the core deformation is

-. 5 different at different azimuthal locations and
that the inner and outer radii do not follow the

n = 11 same pattern (Yule [32)). The figures indicates

-1.~10 that the inner and outer edges of the vorticity
9 core of the torus may move in anti-phase and that
8- variations at frequencies different than the

perturbation frequency arise at late times. Thus,

4 higher order radial modes form as part of the

Instability of vortex rings, in accordance with
the conclusion of the analytical theory [15). To

-2.0 quantify these frequencies, we study the energy
spectra of two tori. In Figs. 20 and 21. the

2spectra for o/R - 0.20 at t - 100 and for
-2 4 /f - 0.35 at t - 200 are shown. In the stable

26i modes, only the perturbation frequency Is present

at very small amplitude. In the unstable modes,
T1[f higher harmonics of the perturbation frequency,

which had zero amplitudes at t - 0 are excited at
F.g e '. The growth of the perturtation with substantial levels.
t1T-e for a torus wit c/R - 0.2, perturbed with n

~9, 10, and 11. 14
0

95 12 o
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TIM Figure 18. Comparison between the experimental

data, x, of Widnall et al. [15] and of the

Figure 17. The growth of the perturbation with numerical predictions, *.of the unstable modes of

time for a torus with /R - 0.35. perturbed with n a vortex torus. The plots include data from Fig.

- 5, 6. 10.
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11I AXISYMMETRIC SHEAR LAYER 1.0

The ultimate goal of this work is to study, 1.9

using three dimensional vortex simulation, the 6.6
evolution of a turbulent axisymmetric shear layer.
Analytical and experimental studies of this 0.7

configuration indicate that several types of 0.6
Instability can arise and influence the
development of the flow field (e.g. Yule £32], :D .5

Crow and Champagne 133] and Michalke and Hermann 9.4

[34].) These instabilities include axisymmetric
modes, such as the rollup and pairing of ring-like 9.3
vortex eddies, and the jet-preferred mode, as well 0.2
as azimuthal modes such as the type which was
analyzed in the previous section. The interaction 9.1
between these modes, which have not been fully 0.0 M v LQ40v
understood, govern the flow, and In particular, -4 3 -2 -- 1- 2 3
the velocity fluctuations, entrainment, and mixing
between the fluids on both sides of the layer.
Chemical reactions. sound generation, combustion
Instability can be strongly affected by these Figure 22. Actual and discretized vorticity within
Interactions. the shear layer. Five vortex balls are used at

In this section, results for the evolution of the indicated location.
an axisymmetric shear layer, subject to an

axisymmetric perturbation, and using the three- neighbors in the z-direction at time t - 0 are
dimensional vortex scheme developed in the

previous section, are presented. The computations connected using cubic Spline curves to show the
Sare restricted to a periodically excited layer, stretch that the flow experiences while vortiity

thus boundary conditions on both sides of the and the material lines are plotted every 20andurn the mtrialline p ar e plotteey 20el

computational domain, i.e. the wavelength, are computational time steps starting at t - 0.
satisfied. This is accomplished by using image Although five layers of vortex elements were used
vortices on both sides of the domain and computing to d13cretize the vorticity In the radial
their field by summing over the induced velocity direction, the Plots in Fig. 24 show only twoofitheseoimages.pThesfirst image ofoeach vorte
of these images. The first image of each vortex layers, the central layer and the next layer to
on both sides must be considered as a vortex ball the outside. Plots of vortex elements locations
with a finite core radius. Beyond that, images in the radial plane and the p-z plane show that
can be considered as vortex points with zero the elements remain on perfect circles while the

cores. The effect of the latter can be arranged radii of these circles increase or decrease as the
as a summation ove" an infinite series for a two- vorticity layer rolls up.
parameter function. This function is computed, Results in Fig. 23 indicate that the initial
using a large number of terms in the series, and perturbation causes the layer to rollup, forming a
stored as a two-dimensional table of the two large scale ring-like vortex eddy. As time

parameters. During the computations, anlneptonoeue sue o bante progresses, more of the vorticity becomes
interpolation rocedure is used to obtain the concentrated around this eddy, and more
value of the function at intermediate points. Irrotational fluid from both streams is entrained
Details will be published elsewhere. Into its core. Due to the self-induced velocity

Results are obtained for an axisymmetric of curved vortex lines, the eddy moves in the
shear layer with the following parameters: the atreamwlse direction. However, within the

thickness of the vorticity layer I/D - 0.2, duration of the computation, it maintains perfect
wavelength of the perturbation AiD - 1.32, and azimuthal symmetry. Figure 24 shows that the

amplitude of perturbation c/D - 0.04, where I - 2 central layer experiences the strongest stretch
o and a is the standard deviation of the second- within the core as it endures several turns due to

order Gaussian vorticity distribution within the secondary instabilities, while the "braids", i.e.
layer and D is the mean diameter of the layer. the two sleeves connecting neighboring cores,
The layer Is discretized into 16 sections In the become thinner due to the strain field of the
streamwise di-ections and 5 sections in the cross- cores.

stream direction, resulting in 80 vortex rings. Since the layer maintains a perfect
Each ring is represented by 50 vortex balls along axisymmetric configuration during rollup, one can

Its axis. The vorticity of each vortex ball was make a preliminary conclusion that the growth of
obtained as before using /D - 0.0825. Figure 22 the axisymmetric modes during the early stages of
shows a comparison between the actual and development suppresses the azimuthal Instability

discretized vorticity distribution, modes of the evolving vortex-ring eddy. This Is
Figure 23 Shows the location of the vortex widely supported by the analytical linear theory

elements In p-z plane, where p is the radial of Michalke and Hermann [35) and by the
direction and z is the streamwise direction, and experimental results of Vandsburger et al. [163,
their streamwise velocity relative to the mean Roquemore et al. (17) and Namazian et al. (35).
flow. In Fig. 24, vortex balls which were The analytical study shows that the exponential

M1.1
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growth rates of axisymmetric modes are higher than IV CONCLUSIONS

those of azimuthal modes. Moreover. in all the

reported experimental results, including those of In this work, we have embarked on the task of

Yule [32] and Crow and Champagne [33), the layer applying three dimensional vortex methods for the

starts by rolling up Into a perfect vortex ring. numerical solution of the unsteady Navier-Stokes

At later stages, the rings become susceptible to equations at high Reynolds number. The 3D vortex
the azimuthal instability discussed in the element method presented here combines the
previous section and the flow loses the azimuthal advantages of the vortex filament method of

coherence. Leonard [8,11], and the vortex stick method of
However, this is only a preliminary Chorin [23.23) in maintaining the connectivity of

conclusion since, in the numerical solution, the the vorticity field, thus satisfying the
flow started with a large axisymmetric solenoidality condition. It utilizes the results
perturbation and zero azimuthal perturbation. The of the convergence analysis of Beale and Majda
amplitudes of the perturbations were selected to [19,20) in selecting the core of the vortex
model most experimental situations, where elements. The scheme is Lagranglan, is capable of

" azimuthal perturbations are inhibited at the onset capturing the effect of plain Strain as well as
" of the layer by the nozzle. The higher growth the vortex stretching along vortex lines by

rate of the axisymmetric mode could also be a changing the number and strength of the vortex
property of the linear range, as shown by the elements. It is readily extendable to flow fields

analytical results. To support this result and to with boundaries.

study the effect of the azimuthal modes on the Results for the stability of a vortex ring
growth of the axisymmetric modes, we are planning with a finite core, which forms as an axlsymmetric

% to run the same case for different ratios of the vorticity layer rolls up, show very good agreement

axlsymmetric/azinuthal amplitudes. Another issue with the analytical and experimental results. The

4 to be Investigated is at what stage does the results reveal: (1) the breakdown of the azimuthal
N azimuthal modes start to grow and what effect does coherence of the ring due to the growth of radial

the strain field generated during pairing have on perturbations along and within the core; (2) the
its development. evolution of streamwise vorticity in the non-

Apart from the displacement of the ring eddy linear stages of instability in the form of

in the streamwise direction due to the curvature elongated lobes of vorticity along wedges within

* of tne vortex lines, this eddy resembles the eddy the expanding core; and (3) the development of an
that forms during the rollup of the planar shear energy cascade to small scales which accompanies
layer (Ghoniem et a.. 36). This similarity has the stretch of vorticIty during the non-linear

bee- observed before in the two-dimensional growth of instability. Similar configurations
calculations of Davis and Moore '37]. As Fig. 24 were captured In experimental studies on vortex

indicates, the streanwlse strain field, associated rings and later stages of turbulent jets.
with the non-linea" stages of rollup, pulls the The scheme was used to investigate the

vortex elements apart so that the distance between initial stages of transition to turbulence in an

the neighboring centers exceeds h by a large excited axisymmetric mixing layer, and the results

* factor. In o-der to maintain the resolution at showed good agreement with the recent qualitative

later times, the vo-tlcity field must be results of Vandsburger et al. [16) and Roquemore
redistributed between a different set of elements et al. (17]. Quantitative study will be performed

which are organized so that they can accomodate to investigate the interaction between the
tnis strain field, as suggested by Choniem et al. axisymmetric and the azimuthal instability modes

:36: in the 2D vortex element method, and their effect on the development of the flow.

The stability of tris ring eddy. which has an

elliptical core. to azimuthal perturbations while
it is moving in the strain field of its
neighboring eddies is of central Importance to the ACKNOWLEDOEMENT

later stages of development of the layer. A
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